УТВЕРЖДАЮ

Директор Федерального государственного бюджетного учреждения науки Института физики полупроводников им. А.В. Ржанова Сибирского отделения Российской академии наук

член-корреспондент РАН

А. В. Латышев

2014 г.

ОТЗЫВ

ведущей организации

на диссертационную работу Тарасова Ивана Анатольевича «Развитие методики эллипсометрического контроля параметров наноструктур Fe/Si в процессе роста», представленную на соискание ученой степени кандидата физико-математических наук по специальности 01.04.01 – приборы и методы экспериментальной физики

1. Актуальность темы.

Метод эллипсометрии является одним из наиболее привлекательных для in situ метрологического сопровождения процессов на поверхности роста при формировании низкоразмерных систем. Эллипсометрические измерительные модули легко встраиваются в сверхвысоковакуумные ростовые установки, а сами измерения не оказывают влияния на растущую структуру, что оказывается принципиальным в ряде применений. Эллипсометрические измерения несут информацию об оптических свойствах и толщинах растущих слоёв, их структурных характеристиках, позволяют наблюдать особенности их формирования на начальных стадиях роста и многое другое.

Современная эллипсометрическая аппаратура обладает высоким

быстродействием, что делает возможным получение потока информации практически в непрерывном режиме. В связи с этим на первый план выступает актуальная задача, связанная с корректной обработкой результатов непрерывного эллипсометрического мониторинга. В первую представляет интерес получение из этих данных профилей оптических постоянных — зависимостей показателей преломления и поглощения растущих слоёв от толщины. Важность и актуальность данной проблемы следуют уже из того факта, что на протяжении последних десятилетий многие исследователи занимались этой задачей и вносили свой вклад в её решение. Такая задача достаточно просто решается, когда известна зависимость эллипсометрических параметров от толщины. Однако в реальном эксперименте эллипсометрические параметры измеряются в процессе роста как функции времени, и их зависимость от толщины можно установить лишь приближённо, если какимлибо образом прокалибровать скорость роста.

Целью данной работы явилось создание и реализация экспресс-методики, позволяющей вести контроль толщины и оптических постоянных структур на основе системы Fe/Si в процессе их роста. Для реализации поставленной цели в работе были четко сформулированы задачи исследования, реализована и проведена экспериментальная апробация методики, позволяющей проводить анализ зависимостей толщины и оптических постоянных синтезируемых структур от времени на основе данных in situ одноволновой эллипсометрии, проведена систематизация полученных экспериментальных данных.

2. Новизна полученных результатов.

Представленные в диссертационной работе результаты являются оригинальными, получены впервые и вносят вклад в решение проблем диагностики низкоразмерных структур в процессе их формирования, а также в решение ряда исследовательских задач спинтроники. Из наиболее значимых результатов, полученных соискателем, следует отметить следующие.

1. Разработан и реализован практически в программном исполнении алгоритм обработки эллипсометрических in situ измерений, который позволяет рассчитывать профили оптических постоянных растущих

слоёв и осуществлять экспресс-контроль толщины и оптических постоянных структур в масштабе реального времени. Эффективность алгоритма проверена путём численных модельных экспериментов, изучены пределы его применимости и установлена точность решения обратной задачи.

- 2. На основании разработанного алгоритма впервые исследованы изменения комплексного показателя преломления в процессе формирования слоёв железа на подложках SiO₂/Si(100) и показано резкое возрастание оптических постоянных слоя Fe на начальной стадии, связанное с островковым ростом.
- 3. Изучены особенности формирования ферромагнитного силицида Fe_3Si и полупроводникового дисилицида β - $FeSi_2$. Показано, что при температуре осаждения $150^{\circ}C$ плёнки $Fe_3Si/Si(111)$ растут однородными по оптическими свойствами начиная с толщины 5 нм, в то время как при выращивании слоёв β - $FeSi_2/Si(100)$ однородный слой формируется только после достижения толщины 20 нм (температура роста $450^{\circ}C$).

3. Достоверность результатов.

Достоверность представленных методических разработок проверялась в численном эксперименте, выполненном по схеме «задание исходного профиля – решение прямой эллипсометрической задачи – нахождение расчётного профиля и сравнение с исходным». Также достоверность подтверждена путём сравнения результатов определения оптических постоянных синтезированных наноструктур Fe/Si, с результатами, полученными другими методами, такими как: просвечивающая электронная микроскопия, рентгеноспектральный флуоресцентный анализ, ех situ многоугловая спектральная эллипсометрия. Косвенно корректность полученных результатов подтверждается их сравнением с известными данными по оптическим постоянным, полученным из литературных источников.

4. Научная и практическая значимость результатов.

Предложенный соискателем алгоритм решения обратной задачи

эллипсометрии для оптически неоднородных слоёв является вкладом в развитие методических вопросов эллипсометрии и представляет интерес в плане дальнейшего развития теории метода. Данный алгоритм и разработанная на его основе программа вычислений имеет также и практическую значимость для исследования оптических свойств растущих слоёв и изучения кинетики ростовых процессов. Особое значение имеет тот факт, что предлагаемая методика позволяет получать информацию в процессе синтеза исследуемых структур, что позволяет в принципе организовать обратную связь и контролируемо управлять процессами роста структур.

5. Рекомендации по использованию полученных результатов.

Разработанный алгоритм решения обратной задачи из данных кинетических измерений эллипсометрических параметров представляет интерес для решения ряда исследовательских задач, касающихся изучения закономерностей роста, а также для постановки эллипсометрического метода контроля в производстве полупроводниковых структур при выращивании слоистых структур нанометрового диапазона толщин.

Результаты, полученные в работе, могут быть использованы для целей исследования в различных учреждениях Российской академии наук: ИПТМ РАН, ИФП им. А.В. Ржанова СО РАН, ИАПУ ДВО РАН, ФТИ им. А.Ф. Иоффе РАН и других.

6. Замечания по работе.

- 1. Предложенный алгоритм расчёта профилей оптических постоянных используется в работе как для модели с неизменными оптическими константами выращенного слоя, так и для динамической модели, предполагающей изменение оптических свойств в процессе роста. В связи с этим следовало бы представить критерии выбора той или иной модели в каждом конкретном эксперименте.
- 2. В работе наблюдается некоторая небрежность при обращении к численным данным литературных источников. Так, при обработке экспериментов для структуры Fe/SiO₂/Si(100)

использовались значения оптических констант кремния n_{Si} =3.865, k_{Si} =0.023 (глава 3, стр. 64) со ссылкой на работу [72]. В то же время, при определении геометрических параметров многослойной структуры (Fe/Si) $_3/SiO_2/Si$ (100) в расчётах были приняты уже другие данные n_{Si} =3.872, k_{Si} =0.016 со ссылкой на тот же литературный источник [72].

7. Общая характеристика работы.

Представленная диссертационная работа является логически законченным исследованием, в котором представлены как методические разработки, так и полученные с их помощью новые экспериментальные результаты по изучению процессов синтеза низкоразмерных структур спинтроники. Диссертационная работа состоит из введения, пяти глав, заключения и списка цитируемой литературы. Общий объем диссертации составляет 137 страниц, включая 66 рисунков, 11 таблиц и списка цитируемой литературы из 112 наименований.

Личный вклад соискателя заключается в разработке и реализации алгоритма, позволяющего проводить экспресс-контроль толщины и оптических постоянных структур in situ в масштабе реального времени, а также в обработке и анализе полученных данных. Автор принимал активное участие в планировании и проведении экспериментов по получению всех описываемых в данной работе структур.

Представленные в работе результаты подтверждены публикациями в ведущих отечественных научных изданиях, а также участием в отечественных и зарубежных научных форумах. Автореферат правильно отражает содержание диссертационной работы, а сама работа удовлетворяет требованиям ВАК, предъявляемым к диссертациям на соискание ученой степени кандидата физико-математических наук и соответствует специальности «приборы и методы экспериментальной физики». Ее автор — Тарасов Иван Анатольевич заслуживает присвоения ему искомой степени кандидата физико-математических наук по специальности 01.04.01 — приборы и методы экспериментальной физики.

Диссертационная работа Тарасова И.А. была заслушана 18 июня 2014 г. на научном семинаре Института физики полупроводников им. А.В. Ржанова СО РАН и по результатам её обсуждения получила положительную оценку. В семинаре принимали участие три доктора и восемь кандидатов наук.

Данный отзыв является официальным отзывом ИФП СО РАН.

Заведующий Отделом роста и структуры полупроводниковых материалов профессор, д.ф.-м.н.

Пиниво О.П. Пчеляков

Ведущий научный сотрудник Лаборатории эллипсометрии доктор физ.-мат. наук.

Bleen B.A. Швец

Отзыв рассмотрен и утвержден на заседании Ученого совета Института физики полупроводников им. А.В. Ржанов СО РАН (протокол № 6 от 23 июня 2014 года).

Ученый секретарь ИФП СО РАН, к.ф.-м.н.

" 08" июля 2014 года

А.В. Каламейцев