На правах рукописи

Hur

Алтунин Роман Русланович

ФАЗООБРАЗОВАНИЕ ПРИ ТВЕРДОФАЗНЫХ РЕАКЦИЯХ В ТОНКИХ ПЛЕНКАХ НА ОСНОВЕ Al/Au и Fe/Si

01.04.07 – физика конденсированного состояния

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Красноярск – 2014

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте физики им. Л.В. Киренского Сибирского отделения Российской академии наук (ИФ СО РАН).

Научный руководитель:	Жарков Сергей Михайлович, кандидат физико-математических наук, доцент
Официальные оппоненты:	Авилов Анатолий Сергеевич, доктор физико-математических наук, Федеральное государственное бюджетное учреждение науки Институт кристаллографии им. А.В. Шубникова Российской академии наук, заведующий Отделом электронной кристаллографии
	Белоусов Олег Владиславович, кандидат химических наук, доцент, Федеральное государственное бюджетное учреждение науки Институт химии и химической технологии Сибирского отделения Российской академии наук, старший научный сотрудник
Ведущая организация:	Федеральное государственное бюджетное учреждение науки Институт структурной макрокинетики и проблем материаловедения

Российской академии наук, г. Черноголовка Защита состоится «26» декабря 2014 года в 14³⁰ на заседании диссертационного совета Д 003.055.02 при Федеральном государственном бюджетном учреждении науки Институте физики им. Л.В. Киренского Сибирского отделения Российской академии наук по адресу: 660036, г.Красноярск, Академгородок, 50, стр.38, Институт физики им. Л.В.Киренского

СО РАН, главный корпус.

С диссертацией можно ознакомиться в библиотеке ИФ СО РАН и на сайте <u>http://kirensky.ru</u>

Автореферат разослан «___» ____ 2014 года.

Ученый секретарь диссертационного совета Д 003.055.02 доктор физико-математических наук

Втюрин Александр Николаевич

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Миниатюризация современных электронных устройств привела к тому, что размеры составляющих компонентов могут достигать нескольких десятков нанометров. Тонкие пленки являются основой современной электроники. Они применяются в качестве активных элементов в интегральных схемах, и, пассивных элементах, в качестве соединяющих и металлизирующих слоев. Стабильность физических свойств тонкопленочных определяет надежность микроэлектронных устройств, систем которые используют эти системы. На границе раздела тонкопленочных систем твердофазные реакции могут протекать при относительно низких температурах (0,1-0,5×T_{плав} составляющих элементов), что приводит к образованию новых соединений с другими физико-химическими свойствами.

В связи с бурным развитием электроники последние десятилетия активно проводятся исследования твердофазных реакций в бинарных системах. Можно выделить две основные группы бинарных соединений: металл-металл и металлполупроводник. В группе металл-металл можно выделить бинарное соединение Al-Au. связано широким применением этих Это с материалов микроэлектронике в качестве соединительных проводников, корпусов, а также металлизирующих слоев. Как известно, твердофазная реакция в системе Al/Au начинается уже при комнатной температуре, что вызывает фундаментальный интерес к механизмам массопереноса в этой системе.

В группе металл-полупроводник большое внимание уделяется системе Fe/Si. Соединения данной системы обладают уникальными физическими свойствами, которые имеют потенциальное практическое применение в оптоэлектронных светоизлучающих устройствах, инфракрасных детекторах и устройствах преобразования солнечной энергии. Система Fe/Si также представляет интерес благодаря возможности инжекции спин-поляризованных электронов в полупроводниковый слой, что открывает новые возможности для устройств спинтроники.

Одной из особенностей твердофазных реакций является то, что на границе раздела двух реагирующих материалов первой формируется одна определенная фаза, которая называется *первой фазой*. Важным вопросом является не только предсказание первой фазы, но и определение фазовой последовательности в процессе твердофазной реакции. Существует несколько теоретических моделей, предсказывающих фазовую последовательность при твердофазной реакции в пленочных системах, однако их применимость ограничена.

Главным требованием для новых материалов современной электроники и спинтроники является постоянство физико-химических свойств. Изучение процессов твердофазных реакций в тонких пленках на основе Al/Au и Fe/Si актуально благодаря особенностям протекания твердофазных реакций, а также возможности практического применения этих систем.

3

Структурные *in situ* исследования процессов твердофазных реакций, инициированных термическим нагревом в тонких пленках, позволяют определить температуру начала реакции и получить информацию о фазообразовании непосредственно в процессе реакции. В диссертационной работе представлены экспериментальные электронно-микроскопические и электронографические *in situ* исследования фазообразования при твердофазных реакциях в тонких пленках на основе Al/Au и Fe/Si.

Цель работы:

Исследовать фазообразование в процессе твердофазных реакций в тонких пленках на основе Al/Au и Fe/Si методами *in situ* просвечивающей электронной микроскопии и дифракции электронов, установить температуры начала твердофазных реакций и последовательности образования фаз в процессе термического нагрева образцов.

Для достижения цели были сформулированы и поставлены следующие задачи исследования:

1. Исследовать процессы фазообразования при твердофазных реакциях в тонких пленках на основе Al/Au и Fe/Si методами *in situ* просвечивающей электронной микроскопии и дифракции электронов. Твердофазные реакции инициировать термическим нагревом образцов непосредственно в колонне просвечивающего электронного микроскопа. Установить температуры начала твердофазных реакций и фазы, формирующиеся в процессе нагрева пленок.

2. Методами *in situ* просвечивающей электронной микроскопии определить температуру начала твердофазной реакции, инициированной путем термического нагрева, непосредственно на границе раздела слоев Fe и Si в тонкопленочной мультислойной системе (Fe/Si)₃.

3. Установить температуру начала твердофазной реакции между эпитаксиальной пленкой Fe₃Si(111) и монокристаллической подложкой Si(111). Определить фазы, формирующиеся в процессе твердофазной реакции, инициированной путем термического отжига.

Научная новизна диссертации состоит в следующем:

1. Построена схематичная диаграмма, подробно демонстрирующая последовательность образования фаз в тонких пленках Al/Au в процессе твердофазной реакции, инициированной термическим нагревом.

2. Исследовано фазообразование при твердофазной реакции в тонких пленках Si/Fe/Si (Si в аморфном состоянии, Fe в поликристаллическом) в процессе термического нагрева в температурном диапазоне от 25°C до 900°C.

3. Исследована термическая стабильность и фазообразование при твердофазной реакции между эпитаксиальной пленкой Fe₃Si(111) толщиной ≈ 20 нм и подложкой Si(111). Установлено, что при термических отжигах системы Fe₃Si(111)/Si(111) вплоть до 400°С не происходит изменений фазового состава. Твердофазная реакция начинается с образования фаз ϵ -FeSi и β -FeSi₂ в процессе термического отжига при температуре 450°С.

Практическая значимость работы

Тонкие пленки Fe/Si являются многообещающими кандидатами для использования в оптоэлектронных светоизлучающих устройствах, инфракрасных детекторах и устройствах преобразования солнечной энергии. Соединения алюминия и золота используется в CBЧ-транзисторах, работающих по КМОП-технологии. Результаты исследования инициированных термическим нагревом твердофазных реакций на границе раздела Al/Au и Fe/Si, имеют практическую значимость, так как способствуют определению безопасного температурного диапазона работы микроэлектронных устройств и приборов, функционирующих на основе этих материалов.

Достоверность результатов исследования обеспечена использованием современного научного оборудования для получения и исследования образцов, а также воспроизводимостью полученных экспериментальных результатов.

Объекты исследования

– тонкие двухслойные пленки Al/Au, полученные методом электроннолучевого испарения в высоком вакууме;

– тонкопленочные системы на основе Fe и Si, полученные методом термического испарения в сверхвысоком вакууме.

Методы исследования

Для определения микроструктуры образцов, фазового и элементного состава использовали методы просвечивающей электронной микроскопии, дифракции электронов и энергодисперсионной спектроскопии. Твердофазные реакции инициированы термическим нагревом образцов непосредственно в колонне просвечивающего электронного микроскопа.

Положения, выносимые на защиту

1. Схематичная диаграмма, подробно демонстрирующая последовательность и температуры образования фаз при твердофазной реакции, инициированной термическим нагревом, в тонких двухслойных пленках Al/Au (атомное содержание Al>Au).

2. Последовательность и температуры образования фаз при твердофазной реакции, инициированной термическим нагревом, в тонких пленках Si/Fe/Si.

3. Экспериментальное установление области термической стабильности эпитаксиальной системы Fe₃Si(111)/Si(111).

4. Фазообразование и ориентационные соотношения соединений, полученных в процессе твердофазной реакции между эпитаксиальной пленкой Fe₃Si(111) и монокристаллической подложкой Si(111), инициированной термическим отжигом.

Личный вклад автора

Формулировка цели и задач настоящего исследования, а также, основных выводов и положений, выносимых на защиту, осуществлялись автором, совместно с научным руководителем. Получение тонкопленочных образцов на основе Al/Au, расшифровка и анализ полученных научных результатов исследований, осуществлялись лично автором.

Апробация работы

Основные результаты, изложенные в диссертации, докладывались и обсуждались на конференциях различного уровня: 2-nd Japanese-Russian young scientists conference on Nano-materials and Nano-technology (Tokyo, 2010); XIV международном симпозиуме "Упорядочение в минералах и сплавах (OMA-14)" (Лоо, 2011); XI International Symposium on Self-Propagating High Temperature Synthesis (SHS-2011) (Greece, 2011); XXIV Российской конференции по электронной микроскопии (РКЭМ-2012) (Черноголовка, 2012); V Euro-Asian Symposium "Trends in MAGnetism: Nanomagnetism (EASTMAG)" (Russia, 2013); XII International Symposium on Self-Propagating High Temperature Synthesis (SHS-2013) (USA, 2013); XXV Российской конференции ПО электронной микроскопии (РКЭМ-2014) (Черноголовка, 2014).

Исследования по теме выполнены при финансовой поддержке РФФИ (проекты №№ 10-03-00993а, 14-03-00515а), ФЦП «Научные и научнопедагогические кадры инновационной России» на 2009-2013 годы (соглашения №№ 14.В37.21.0832, 14.В37.21.1646), Министерства образования и науки Российской Федерации (в рамках гос.задания СФУ в части проведения НИР на 2013 г.) – в перечисленных проектах автор диссертации являлся ответственным исполнителем.

Публикации

Основные результаты работы изложены в 14 публикациях, включая 5 статей в журналах, включенных ВАК в «Перечень» ведущих рецензируемых журналов, и 9 тезисов докладов и сборников научных трудов международных и российских конференций.

Объем и структура работы

Диссертация состоит из введения, 5 разделов и заключения, изложенных на 121 странице печатного текста, включая 46 рисунков, 15 таблиц и списка цитируемой литературы из 114 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ

Во введении обоснована актуальность выбранной темы диссертации и выбор объектов исследования, сформулированы цели и задачи исследования. Представлены основные положения, составляющие научную новизну и практическую значимость диссертации. Представлена информация об апробации работы и достоверности научных результатов.

В первом разделе проведен подробный обзор литературы, посвященной фазообразованию в процессе твердофазных реакциях в тонкопленочных системах Al/Au и Fe/Si. Рассмотрены теоретические модели EHF и Walser-Bene (Theron C. et all // Mat. Chem. & Phys. – 1996. – V.46. – P.238), предсказывающие первую фазу, формирующуюся при твердофазной реакции в бинарных системах. Проведено сравнение этих моделей, выявлены их преимущества и недостатки. Приведены результаты экспериментальных работ, включающие в

температурных стабильностей себя диапазоны последовательности И образования наблюдаемых соединений. Показано, что существуют противоречия В определении фазовых последовательностей в процессе твердофазной реакции в пленках Al/Au.

На основании обзора литературы сделан вывод, что существует достаточно большое количество работ, посвященных исследованию процессов фазообразования при твердофазных реакциях между сверхтонкими (толщиной до 3 нм) и тонкими (толщиной от 3 до 150 нм) пленками Fe и монокристаллическим Si. При этом, очень мало экспериментальных работ, исследующих фазообразование между тонкими эпитаксиальными слоями силицилов железа И монокристаллическим кремнием. В частности, представляет интерес изучение фазообразования при твердофазной реакции в системе Fe₃Si/Si. Большинство структурных исследований фазообразования в мультислойной системе (Fe/Si)_n, в случае, когда железо находится в поликристаллическом состоянии, а кремний в аморфном состоянии, проводили путем достаточно длительных термических отжигов, после чего исследователи наблюдали смесь аморфных и кристаллических фаз.

На основании обзора литературы была сформулирована цель и задачи настоящего исследования.

Во втором разделе описываются условия получения и методы исследования пленок на основе Al/Au и Fe/Si.

Тонкие пленки на основе Al/Au получены автором методом электроннолучевого испарения в высоковакуумной установке MED-020 (Bal-Tec) в лаборатории электронной микроскопии центра коллективного пользования Сибирского федерального университета (ЦКП СФУ). Напыление проводили в высоком вакууме 4×10⁻⁵ Па. Температура подложки во время напыления равнялась комнатной. Пленки на основе Fe/Si, содержащие различное количество слоев Fe и Si, были получены путем термического испарения в сверхвысоком вакууме методом молекулярно-лучевой эпитаксии на модернизированной установке «Ангара» в лаборатории физики магнитных явлений Института физики им. Л.В. Киренского СО РАН. В качестве подложки для напыления пленок использовали монокристаллический NaCl(100), Si(100) и Si(111). Температура подложки во время напыления пленок равнялась комнатной. Базовый вакуум при напылении пленок составлял 2,1×10⁻⁷ Па. Эпитаксиальная система Fe₃Si(111)/Si(111) получена путем одновременного осаждения железа и кремния на атомарно чистую подложку Si(111) при температуре подложки 150°С.

Микроструктура, локальный фазовый и элементный состав тонких пленок исследованы при помощи просвечивающего электронного микроскопа JEOL JEM-2100, оборудованного энергодисперсионным спектрометром Oxford Inca X-sight. Термический нагрев пленок осуществляли непосредственно в колонне просвечивающего электронного микроскопа (базовый вакуум 1×10⁻⁶ Па),

7

используя специальный держатель образцов, с возможностью контролируемого нагрева от комнатной температуры до +1000 °C. Изменение морфологии и фазового состава в процессе твердофазных реакций осуществляли в режиме просвечивающей электронной микроскопии, а также дифракции электронов. Электронно-микроскопические исследования образцов проведены к.ф.-м.н. С.М. Жарковым, при участии автора, в лаборатории электронной микроскопии ЦКП СФУ.

Точность определения элементного состава исследованных образцов и измерения атомных межплоскостных расстояний установлена следующим образом. Известно, что Си и Аи имеют неограниченную растворимость друг в друге, при этом зависимость параметра кристаллической решетки твердого раствора Cu-Au от концентрации элементов имеет практически линейных характер. Была изготовлена серия тонкопленочных образцов Cu/Au с различным атомным соотношением Си и Аи. В результате твердофазной реакции в пленках сформирован неупорядоченный твердый раствор Cu-Au различного состава. На основании анализа картин дифракции электронов, полученных от пленок, определены параметры решетки твердого раствора Си-Аи для каждого состава. Элементный анализ выполнен с помощью энергодисперсионной спектроскопии. На основании анализа полученных результатов рассчитаны погрешности измерений, которые составили: ±1 % при определении межплоскостных расстояний и ±1 ат. % при определении элементного состава образца. Погрешность измерений температуры пленочных образцов при нагреве в просвечивающем электронном микроскопе определена по температуре начала перехода порядок-беспорядок в системе Си-Аи и составляет ≈1%.

Третий раздел посвящен исследованию фазообразования при твердофазной реакции в тонких пленках Al/Au.

Картина дифракции электронов (рисунок 1а), полученная от двухслойной пленки Al/Au (толщина слоя Al≈44 нм, Au≈30 нм, атомное содержание Al>Au) в исходном состоянии содержит дифракционные рефлексы от фаз чистого алюминия и золота. Анализ профиля интенсивности электронограммы выявил наличие слабых дифракционных рефлексов в виде гало, принадлежащих интерметаллической фазе Al₂Au₅. Очевидно, что при получении пленок Al/Au на границе раздела алюминий-золото сформировался небольшой (≈1-2 нм) слой Al₂Au₅. Электронно-микроскопические исследования (рисунок 1б) показали, что пленки Al/Au в исходном состоянии состоят из кристаллитов со средним размером 15±5 нм. С целью получения информации о последовательности и температурах образования фаз при твердофазной реакции проведена серия непрерывных термических нагревов тонких пленок Al/Au в температурном диапазоне от комнатной температуры до 220°C. Скорость нагрева составляла 20-24°C/мин. Одновременно с нагревом образца производили регистрацию картин дифракции электронов со скоростью 6 кадров/мин.

8

Рисунок 1. Картина дифракции электронов (а) и электронно-микроскопическое изображение (б), полученные от пленки Al/Au в исходном состоянии

На рисунке 2 представлена динамика изменений относительной интенсивности дифракционных рефлексов электронограмм, полученных от пленки Al/Au в процессе нагрева в температурном диапазоне 86-118°C. Начало твердофазной реакции на границе раздела между слоями золота и алюминия регистрируется при достижении температуры $86\frac{+3}{-5}$ °C. При этой температуре наблюдается появление слабых дифракционных рефлексов фазы AlAu₂, а также увеличение интенсивностей рефлексов фазы Al₂Au₅.

Рисунок 2. Динамика изменений относительной интенсивности дифракционных рефлексов электронограмм, полученных от пленки Al/Au в процессе нагрева в температурном диапазоне 86-118°C

При температуре $94\frac{+3}{-5}$ °С наблюдали появление слабых дифракционных рефлексов фазы Al₂Au. Расшифровка картины дифракции электронов, полученной от пленки Al/Au при T=111 $\frac{+3}{-5}$ °С, подтверждает одновременное присутствие пяти фаз: Al, Au, Al₂Au₅, AlAu₂ и Al₂Au. Анализ профиля интенсивности дифракционных рефлексов электронограммы при этой температуре выявил, что фаза Al₂Au₅ количественно доминирует в объеме пленки, при этом фазы алюминия и золота присутствуют лишь в небольших количествах.

При температуре $114\frac{+3}{-5}$ °С интенсивности дифракционных рефлексов фазы Al₂Au₅ значительно уменьшаются, при этом, интенсивности рефлексов фаз AlAu₂ и Al₂Au начинают резко увеличиваться. Это вызвано диффузией атомов алюминия и золота из области с фазой Al₂Au₅ в области с фазами AlAu₂ и Al₂Au. Анализ интенсивностей дифракционных рефлексов электронограмм, полученных от пленки Al/Au в температурном диапазоне 114-137°C, выявил, что фаза AlAu₂ количественно доминирует над фазой Al₂Au.

В ходе дальнейшего нагрева интенсивности дифракционных рефлексов фазы Al₂Au увеличиваются, а интенсивности рефлексов фазы AlAu₂ уменьшаются, что свидетельствует о массопереносе атомов алюминия и золота из области с фазой AlAu₂ в область с фазой Al₂Au. На основании анализа профилей интенсивностей сделан вывод, что начиная с температуры $175\frac{+4}{-6}$ °C фаза Al₂Au начинает количественно преобладать над фазой AlAu₂. При этом, фаза Al₂Au₅ наблюдается в небольшом количестве, вплоть до температуры $195\frac{+4}{-6}$ °C.

В температурном диапазоне 206-209°С значительно снижаются интенсивности дифракционных рефлексов фазы AlAu₂ и уже при температуре $213\frac{+4}{-6}$ °С на электронограммах не наблюдаются рефлексы данной фазы. В течение дальнейшего нагрева до 220°С и остывания тонких пленок до комнатной температуры значительных изменений не наблюдали: в пленке присутствует только фаза Al₂Au и небольшое количество чистого золота. Электронно-микроскопические исследования пленки Al/Au, проведенные после нагрева до 220°С и охлаждения до комнатной температуры, показали, что пленка состоит из кристаллитов со средним размером 46±10 нм.

Результаты проведенных структурных исследований пленок Al/Au представлены в виде схематичной диаграммы (рисунок 3), которая демонстрирует фазовую последовательность в процессе твердофазной реакции, инициированной термическим нагревом.

10

Рисунок 3. Схематичная диаграмма, демонстрирующая фазовую последовательность при твердофазной реакции в пленках Al/Au (атомное содержание Al>Au) Ha профилей основании анализа дифракционных интенсивности рефлексов электронограмм, полученных от пленок в процессе нагрева от 25 до 220°C. были установлены доминирующие определены фазы И качественные соотношения между наблюдаемыми интерметаллическими соединениями Al-Au. Анализ диаграммы (рисунок 3) показал, что фазы присутствовали в пленке при нагреве в следующих температурных диапазонах: Al₂Au₅(T_{комн}-192°С), AlAu₂(86-203°С) и Al₂Au(94-220°C). Полученные экспериментальные данные позволяют сделать вывод, что в исследованных Al/Au твердофазной пленках при реакции происходит последовательное формирование фаз Al₂Au₅, AlAu₂ и Вероятно, Al₂Au. ЧТО фаза Al₂Au₅ формируется первой потому, что имеет эффективную наименьшую теплоту $(\Delta H' = -20)$ формирования кДж/моль). В ходе дальнейшего нагрева последовательно формируются фазы AlAu₂ и Al₂Au, которые обладают более значениями $\Delta H'$: высокими -19.8 кДж/моль -10,2 кДж/моль И соответственно). Это качественно согласуется С последовательностью образования фаз, предсказанной моделью ЕНГ (в случае, когда атомное содержание Al>Au):

 $Al_2Au_5 \rightarrow AlAu_2 \rightarrow AlAu \rightarrow Al_2Au$.

На основании установленных в настоящей работе температур образования фаз, проведена оценка усредненного коэффициента диффузии D атомов алюминия и золота через слой продуктов реакции, используя

соотношение $x^2 = Dt$, где t – время реакции, x – среднее смещение атомов от начальной границы интерфейса. Показано, что в температурном диапазоне 86-111°C происходит активное перемешивание атомов алюминия и золота, что

приводит к образованию интерметаллических соединений практически во всем объеме пленки. Известно, что фазообразование в тонких пленках Al/Au лимитируется диффузией. Время нагрева (t) пленки Al/Au от температуры 86°C до 111°C составляло 61 секунду. Среднее смещение атомов от начальной границы интерфейса (*x*) принято половине толщины двухслойной пленки Al/Au и составляет ≈37 нм. Таким образом, оценочное значение усредненного коэффициента диффузии через слой продуктов реакции в температурном диапазоне 86-111°C: D≈2×10⁻¹³ см²/с. С учетом размера кристаллитов в оцененного коэффициента состоянии. диффузии, исходном а также предположено, что на начальном этапе твердофазной реакции массоперенос атомов алюминия и золота осуществлялся преимущественно диффузией по границам зерен.

Четвертый раздел посвящен исследованию фазообразования при твердофазной реакции, инициированной путем термического нагрева в пленках Si/Fe/Si. Толщины индивидуальных слоев кремния составляли \approx 25 нм, толщина слоя железа \approx 15 нм. Тонкие пленки Si/Fe/Si были отделены от подложки NaCl в дистиллированной воде и высажены на электронно-микроскопическую сеточку, изготовленную из молибдена.

На картине дифракции электронов (рисунок 4a), полученной от пленки Si/Fe/Si в исходном состоянии наблюдаются поликристаллические кольца, соответствующие α-Fe, и гало, соответствующие аморфному кремнию. Электронно-микроскопические исследования пленок Si/Fe/Si в исходном состоянии (рисунок 4б) показали, что пленки состоят из кристаллитов железа (размером ~10-20 нм) и аморфного кремния.

Рисунок 4. Картина дифракции электронов (а) и электронно-микроскопическое изображение (б), полученные от пленки Si/Fe/Si в исходном состоянии

Анализ энергодисперсионного спектра, полученного от пленки Si/Fe/Si в исходном состоянии, показал, что атомное соотношение Fe:Si≈1:2. В пленке также присутствует ≈20 ат.% кислорода. Основная причина появления такого большого количества кислорода – поверхностное окисление слоев кремния на воздухе, а также при отделении пленок Si/Fe/Si от подложки в воде.

С целью получения информации о температурах и последовательности образования фаз при твердофазной реакции, пленки Si/Fe/Si были нагреты до 900°С со скоростью 8°С/мин. Одновременно с нагревом производили регистрацию картин дифракции электронов со скоростью 4 кадра/мин. Начало твердофазной реакции между слоями железа и аморфного кремния зарегистрировано при температуре $450\frac{+6}{-7}$ °C. При этой температуре на картинах наблюдаются небольшие изменения электронов положений дифракции (≈0,01 Å) дифракционных рефлексов Fe. Происходит небольшой СДВИГ в сторону меньших межплоскостных расстояний. На рисунке 5 представлены дифракционных рефлексов профили интенсивностей электронограмм, полученных от пленки Si/Fe/Si при различных температурах.

Рисунок 5. Динамика изменений профиля

интенсивности дифракционных рефлексов электронограмм, полученных от пленки Si/Fe/Si в процессе нагрева в температурном диапазоне 475-734°C

При температуре 499⁺⁶₋₇ °C на электронограммах начинают появляться слабые дифракционные рефлексы, соответствующие кристаллической фазе є-FeSi. Интенсивности дифракционных рефлексов фазы є-FeSi увеличиваются в процессе нагрева вплоть до температуры $674\frac{+8}{-9}$ °C. При температуре $550\frac{+7}{-8}$ °C начинается постепенное уменьшение интенсивностей дифракционных достижении $674\frac{+8}{-9}$ °С на электроннограмме рефлексов α-Fe. При дифракционные рефлексы α-Fe не наблюдаются, что свидетельствует об окончании твердофазной реакции между α-Fe и кремнием, в результате которой формируется кристаллическая фаза ε-FeSi. При температуре 676⁺⁸/₋₀ °C на картине дифракции электронов помимо рефлексов фазы є-FeSi наблюдается гало $(3,2\pm0,1 \text{ Å})$, которое соответствует аморфному кремнию (Si d(111)=3,13 Å) и аморфной фазе Fe-Si (ε-FeSi d(110)=3,17 Å). При достижении температуры 715⁺⁸₋₁₀ °С данное гало на электронограммах перестает наблюдаться, что свидетельствует о том, что аморфный кремний и аморфная фаза Fe-Si полностью прореагировали, сформировав кристаллическую фазу ε-FeSi.

В течение дальнейшего нагрева до 900°С на электронограмме наблюдали лишь небольшое увеличение интенсивности рефлексов кристаллической фазы ε-FeSi (рисунок ба). На рисунке бб представлено электронно-микроскопическое изображение, полученное от пленки Si/Fe/Si, после нагрева до 900°С и охлаждения до комнатной температуры. Установлено, что средний размер кристаллитов фазы ε-FeSi составлял ≈10-20 нм.

Рисунок 6. Картина дифракции электронов (а) и электронно-микроскопическое изображение (б), полученные от пленки Si/Fe/Si после нагрева до 900°C, температура съемки 25°C

С целью получения информации о процессе твердофазной реакции непосредственно на границе раздела между слоями Fe и Si получен поперечный мультислойной системы $(Fe/Si)_3$. Электронно-микроскопическое срез изображение поперечного сечения системы (Fe/Si)₃ в исходном состоянии представлено на рисунке 7а. Различимы темные области – слои Fe с толщиной ≈9,6 нм, яркие области – слои Si с толщиной ≈1,8 нм, а также, защитный аморфный слой Si толщиной ≈30 нм, слой клея, монокристаллическая подложка Si(100), а также промежуточная область SiO₂ толщиной ≈2,0 нм между подложкой Si(100) и (Fe/Si)₃. Образец был нагрет от комнатной температуры до 750°C co скоростью 10°С/мин. В процессе производили нагрева видеорегистрацию электронно-микроскопических ихзображений, что позволило регистрировать изменения микроструктуры мультислойной системы твердофазной реакции $(Fe/Si)_3$. Начало между железом И кремнием регистрируется при температуре ≈350°С. Яркие области между слоями железа На рисунке 76 показано изменение микроструктуры становятся шире. мультислойной системы (Fe/Si)₃ при нагреве до 440°С.

Рисунок 7. Электронно-микроскопические изображения поперечного сечения мультислойной системы (Fe/Si)₃ в исходном состоянии (а) и при T=440°C (б)

Известно, что начало твердофазной реакции в тонких пленках на основе Fe/Si начинается с взаимной диффузии атомов железа и кремния, что приводит к образованию твердого раствора на основе ОЦК Fe и аморфной фазы Fe-Si. Начало твердофазной реакции между слоями железа и аморфного кремния в исследованных пленках Si/Fe/Si регистрируется при температуре $450\frac{+6}{-7}$ °C в процессе нагрева со скоростью 8°C/мин. На электронограммах наблюдаются первые признаки формирования новых дифракционных рефлексов, связанных с образованием фазы Fe-Si. В случае мультислойной систем (Fe/Si)₃ первые изменения на электронно-микроскопических изображениях наблюдали при более низкой температуре ≈350°C. Обзор литературных данных показал, что в пленках на основе Fe/Si существует зависимость между толщиной слоя железа

Рисунок 8. Схематичная диаграмма, демонстрирующая последовательность формирования фаз при твердофазной реакции в пленках Si/Fe/Si

температурой И начала твердофазной реакции: чем тоньше слой Fe, тем ниже температура формирования фазы Fe-Si. В настоящей работе толщина слоя железа В мультислойных пленках (Fe/Si)₃ была в ≈1.5 раз меньше, чем в трехслойных Si/Fe/Si. Предположено, что ЭТО И послужило причиной того, что твердофазная реакция в системе $(Fe/Si)_3$ регистрируется существенно раньше, чем В случае пленок Si/Fe/Si.

Результаты проведенных исследований структурных пленок Si/Fe/Si представлены в виде схематичной диаграммы которая (рисунок 8), демонстрирует фазовую последовательность в процессе твердофазной реакции, термическим инициированной нагревом. Ha диаграмме не показаны окисленные внешние кремния, которые слои оставались неизменными при нагреве пленок от 25 до 900°С.

В исследованных тонких

пленках Si/Fe/Si в исходном состоянии отношение атомов Fe к Si составляет $\approx 1:2$, однако, в конечном состоянии (после нагрева до 900°C) присутствует только фаза ϵ -FeSi (т.е., соотношение атомов 1:1), при этом, дифракционных рефлексов, соответствующих фазе чистого кремния не наблюдается. Следует отметить, что содержание кислорода в исходном состоянии и после нагрева оставалось неизменным. Предположено, что оксид кремния, сформировавшийся на внешних частях слоев Si при отделении тонких пленок Si/Fe/Si от подложки в воде, оставался стабильным вплоть до 900°C и не вступал в реакцию.

На основании установленных в настоящей работе температур образования фаз, используя соотношение $x^2 = Dt$, где t – время реакции, x – среднее смещение атомов от начальной границы интерфейса, проведена оценка усредненного коэффициента диффузии D атомов железа и кремния через слой

продуктов реакции. Начало твердофазной реакции в пленках Si/Fe/Si регистрируется в процессе нагрева при 450⁺⁶/₋₇ °C. При температуре 674⁺⁸/₋₉ °C расходуется все доступное для реакции чистое железо и интенсивности дифракционных рефлексов фазы ε-FeSi становятся, практически, максимальными. Известно, что образование фазы ε-FeSi лимитируется диффузией. Время нагрева (t) пленки Si/Fe/Si от температуры 450⁺⁶/₋₇ °C до 674⁺⁸/₋₉ °C составляло 28 минут. Среднее смещение атомов от начальной границы интерфейса (x) равно половине толщины слоя Fe и одного слоя Si и составляет ≈14 нм. При оценке среднего смещения атомов не учитывали толщину внешних оксидных слоев кремния. На основании вышеприведенных значений получено оценочное значение усредненного коэффициента диффузии атомов железа и кремния через слой продуктов реакции в температурном диапазоне 540-764°С: D≈1×10⁻¹⁵ см²/с.

раздел посвящен in situ электронно-микроскопическим и Пятый электронографическим исследованиям фазообразования при твердофазной реакции в системе Fe₃Si(111)/Si(111). Эпитаксиальная пленка Fe₃Si толщиной ≈20 нм получена путем соосаждения Fe и Si на нагретую монокристаллическую подложку Si(111) в сверхвысоком вакууме. Исследования проведены в геометрии поперечного сечения эпитаксиальной тонкопленочной системы $Fe_3Si(111)/Si(111)$. Наблюдающиеся электронно-микроскопическом на изображении поперечного системы Fe₃Si(111)/Si(111) сечения атомные межплоскостные расстояния составляют: 0,32 нм и 0,33 нм (см. рисунок 9а). Данные значения соответствуют расстояниям Si d(111)=3,136 Å и Fe₃Si d(111)=3,264 Å (пространственная группа Fm-3m(225), параметр решетки a=5,655 Å). Таким образом, подтверждается эпитаксиальная структура пленки Fe₃Si с ориентацией Fe₃Si[111] Si[111]. Картина дифракции электронов (рисунок 9б), полученная от пленки Fe₃Si(111)/Si(111) в исходном состоянии имеет монокристаллический вид. Дифракционные рефлексы соответствуют фазам Si с ориентацией [110], и, Fe₃Si с ориентацией [110]. На основе анализа дифракционных рефлексов и геометрии ИХ взаимного расположения установлено ориентационное соотношение: Fe₃Si(111)[110] Si(111)[110].

Рисунок 9. Электронно-микроскопическое изображение перечного сечения и картина дифракции электронов, полученные от системы Fe₃Si(111)/Si(111) в исходном состоянии

С целью исследования термической стабильности и фазообразования при твердофазной реакции в эпитаксиальной системе Fe₃Si(111)/Si(111) проведена серия термических отжигов в диапазоне 200-550°C с шагом 50°C. Продолжительность отжига при фиксированной температуре составляла 30 минут. Изменений фазового состава на картинах дифракции электронов, полученных от системы Fe₃Si(111)/Si(111) после отжигов при температурах 200-400°C обнаружено не было. Первые изменения на электронограммах наблюдали после отжига системы Fe₃Si(111)/Si(111) при температуре 450°C.

Расшифровка картины дифракции электронов (рисунок 10), полученной методом микродифракции от эпитаксиальной системы Fe₃Si(111)/Si(111) после отжига при 450°С, показала, что на электронограмме наблюдаются дифракционные рефлексы, соответствующие фазам Si, Fe₃Si, ε -FeSi и β -FeSi₂ (пространственная группа Стсе(64), параметры решетки а=9,863 Å, b=7,791 Å, c=7,833 Å). На основе анализа наблюдающихся дифракционных рефлексов и взаимного расположения установлены ориентационные геометрии их соотношения: Fe₃Si[111] [ε-FeSi[120] [β-FeSi₂[100] [Si[111].

Расшифровка картины дифракции электронов, полученной от системы $Fe_3Si(111)/Si(111)$ после отжига при 500°С также показала присутствие фаз Si, Fe_3Si , ϵ -FeSi и β -FeSi₂. Установлены следующие ориентационные соотношения: $Fe_3Si[111] \parallel \epsilon$ -FeSi[111] $\parallel \beta$ -FeSi₂[100] $\parallel Si[111]$.

Рисунок 10. Картина дифракции электронов, полученная от системы Fe₃Si(111)/Si(111) после отжига при 450°C

Таким образом, рост фаз ε-FeSi и β-FeSi₂ происходит с когерентной ориентацией по отношению к исходным фазам Fe₃Si и Si. Подобный эффект наблюдался также в пленках Fe/Pd(001), где в результате твердофазной реакции формируется атомно-упорядоченная кристаллическая фаза L1₀-FePd. Рост фазы происходил с ориентационным соотношением: L1₀-FePd (001)[110] Fe(001)[100].

Тридцатиминутный отжиг системы Fe₃Si/Si(111) при температуре 550°C не выявил изменений фазового состава. Результаты проведенных структурных исследований системы Fe₃Si(111)/Si(111) представлены в виде схематичной диаграммы (рисунок 11), которая демонстрирует фазообразование при твердофазной реакции, инициированной термическим отжигом.

Рисунок 11. Схематичная диаграмма, демонстрирующая фазообразование в процессе твердофазной реакции в системе Fe₃Si(111)/Si(111)

В Заключении приведены основные результаты и выводы, полученные в ходе выполнения диссертационной работы:

Методами in situ просвечивающей электронной 1. микроскопии И электронов исследованы процессы фазообразования дифракции при твердофазных реакциях, инициированных путем термического нагрева в тонких пленках Al/Au и Si/Fe/Si. Определены последовательности образования фаз в процессе твердофазных реакций. Построены схематические диаграммы, демонстрирующие температуры и последовательности образования фаз.

2. Начало твердофазной реакции в пленках Al/Au регистрируется при температуре $86\frac{+3}{-5}$ °C в процессе термического нагрева со скоростью 20°C/мин. Установлено, что в результате твердофазной реакции в пленках Al/Au (атомное содержание Al>Au) последовательно формируются интерметаллические соединения: Al₂Au₅, AlAu₂ и Al₂Au. Проведена оценка усредненного коэффициента диффузии алюминия и золота через слой продуктов реакции в температурном диапазоне 86-111°C: D≈2×10⁻¹³ см²/с.

3. Исследовано фазообразование при твердофазной реакции в тонких пленках Si/Fe/Si (толщины индивидуальных слоев кремния ≈ 25 нм, железа ≈ 15 нм) в процессе термического нагрева в температурном диапазоне от 25°C до 900°C (скорость нагрева 8°C/мин). Начало процесса твердофазной реакции в пленках Si/Fe/Si регистрируется при температуре $450\frac{+6}{-7}$ °C. При T= $499\frac{+6}{-7}$ °C формируется кристаллическая фаза ϵ -FeSi, рост которой продолжается до T= $674\frac{+8}{-9}$ °C, когда слой Fe полностью вступает в реакцию. Формирования других фаз не наблюдали вплоть до 900°C. Проведена оценка усредненного коэффициента диффузии железа и кремния через слой продуктов реакции в температурном диапазоне 450- 674° C: D $\approx 1 \times 10^{-15}$ см²/с.

4. *In situ* электронно-микроскопические исследования процессов твердофазных реакций в мультислойной системе (Fe/Si)₃ показали, что начало реакции, инициированной термическим нагревом, регистрируется в плоскости поперечного сечения при температуре $\approx 350^{\circ}$ C. Толщины индивидуальных слоев составляли: Fe \approx 9,6 нм, Si \approx 1,8 нм. Предположено, что более низкая температура инициирования твердофазной реакции в системе (Fe/Si)₃ по сравнению с исследованными пленками Si/Fe/Si обусловлена меньшей толщиной слоя железа.

5. Проведены термические отжиги эпитаксиальной системы $Fe_3Si(111)/Si(111)$ в диапазоне температур 200-550°С с шагом 50°С. Показано, что данная система при термических отжигах вплоть до 400°С является термически стабильной. Установлено, что процесс твердофазной реакции между эпитаксиальной пленкой $Fe_3Si(111)$ и монокристаллической подложкой Si(111) начинается с образования фаз ϵ -FeSi и β -FeSi₂ в процессе термического отжига при 450°С. Установлено, что рост фаз ϵ -FeSi и β -FeSi₂ происходит с когерентной ориентацией по отношению к исходным фазам Fe_3Si и Si. Определены ориентационные соотношения формирующихся фаз после отжига.

Основные публикации автора по теме диссертации:

- Алтунин, Р.Р. Электронно-микроскопические *in situ* исследования процессов твердофазного синтеза в тонких двухслойных пленках Al/Au / P.P. Алтунин, С.М. Жарков // Известия РАН. Серия физическая – 2013. – T.77 – №8. – С.1091-1094.
- Zharkov, S.M. Solid-state reactions in Fe/Si multilayer nanofilms / S.M. Zharkov, R.R. Altunin, E.T. Moiseenko, G.M. Zeer // Solid State Phenomena – 2014. – V.215 – P.144–149.
- Моисеенко, Е.Т. Твердофазный синтез и атомное упорядочение в тонкопленочной системе Cu/Au (атомное соотношение Cu:Au=3:1) / Е.Т. Моисеенко, Р.Р. Алтунин, С.М. Жарков // Известия РАН. Серия физическая. – 2012. – Т.76. – №10. – С.1283–1286.
- Жарков, С.М. In situ исследования твердофазных реакций и атомного упорядочения в двухслойных нанопленках Си/Аи методами просвечивающей электронной микроскопии и дифракции электронов / С.М. Жарков, Е.Т. Моисеенко, Р.Р. Алтунин, Г.М. Зеер // Журнал Сибирского федерального университета. Серия "Химия". – 2013. – Т.6. – №3. – С. 230-240.
- Жарков, С.М. Исследование процессов твердофазных реакций и переходов порядок – беспорядок в тонких пленках Pd/α-Fe(001) / С.М. Жарков, Е.Т. Моисеенко, Р.Р. Алтунин, Н.С. Николаева, В.С. Жигалов, В.Г. Мягков // Письма в ЖЭТФ – 2014. – Т.99 – № 7 – С.472–477.
- 6. Жарков, С.М. Исследование процессов твердофазного синтеза в тонких двухслойных пленках Al/Au / С.М.Жарков, Р.Р. Алтунин // Тезисы докладов XXIII Российской конференции по электронной микроскопии (РКЭМ 2010). Черноголовка. 2010. С.207.
- Altunin, R.R. Solid-state synthesisin Al based thin bilayer films / R.R. Altunin, E.T. Moiseenko, Yu.G. Semenova, S.M. Zharkov // The book of abstracts of 2nd Japanese-Russian young scientists conference on Nano-materials and Nanotechnology. – Tokyo. – 2010. – P.52.
- Zharkov, S. M. *In situ* transmission electron microscopy investigations of solidstate synthesis in thin films / S. M. Zharkov, R. R. Altunin, Yu. G. Semenova, E.T. Moiseenko, S.N. Varnakov // The book of abstracts of XI International Symposium on Self-Propagating High Temperature Synthesis (SHS-2011). – Greece, Attica. – 2011. – P.78-79.
- Моисеенко, Е.Т. Твердофазные реакции и атомное упорядочение в тонких пленках Cu/Au / Е.Т. Моисеенко, Р.Р. Алтунин, С.М. Жарков // Труды 14-го международного симпозиума "Упорядочение в минералах и сплавах (OMA-14)". – Ростов-на-Дону, Лоо. – 2011. – Т.2. – С. 50-51.

- Жарков, С.М. *In situ* электронно-микроскопические и электронографические исследования процессов твердофазных реакций в тонких пленках / С.М. Жарков, Р.Р. Алтунин, Е.Т. Моисеенко, С.Н. Варнаков // Тезисы докладов XXIV Российской конференции по электронной микроскопии (РКЭМ-2012). – Черноголовка. – 2012. – С. 144.
- Altunin, R.R. In situ transmission electron microscopy investigation of solid-state synthesis in Al/Au nanofilms / R.R. Altunin, S.M.Zharkov // The book of abstracts of Fifteenth Annual Conference YUCOMAT 2013. – Herceg Novi. – 2013. – P.23.
- Zharkov, S. M. *In situ* transmission electron microscopy investigation of solidstate reactions in Fe/Si multilayer nanofilms / S.M. Zharkov, R.R. Altunin, E.T. Moiseenko, S.M. Varnakov, S.G. Ovchinnikov // The book of abstracts of V Euro-Asian Symposium "Trends in MAGnetism": Nanomagnetism (EASTMAG-2013). – Russky Island, Vladivostok. – 2013. – P.41.
- Zharkov, S. M. *In situ* transmission electron microscopy and electron diffraction investigations of solid-state reactions in thin-film nanosystems / S.M. Zharkov, R.R. Altunin, E.T. Moiseenko, S.M. Varnakov // The book of abstracts of XII International Symposium on Self-Propagating High Temperature Synthesis (SHS-2013). – USA, South Padre Island. – 2013. – P. 203-204.
- 14. Жарков, С. М. Твердофазные реакции в многослойных пленках Fe/Si / С. М. Жарков, Р.Р. Алтунин, Е.Т. Моисеенко, С.Н. Варнаков // Тезисы докладов XXV Российской конференции по электронной микроскопии (РКЭМ 2014). – Черноголовка. – 2014. – С. 174.