УТВЕРЖДАЮ

Директор Федерального государственного бюджетного научного учреждения «Технологический институт сверхтвердых и новых углеродных материалов» (ТИСНУМ),

ОТЗЫВ

ведущей организации на диссертационную работу Буркова С.И. «Влияние внешних статических воздействий на распространение упругих волн в пьезокристаллах и слоистых структурах», представленную на соискание ученой степени доктора физикоматематических наук по специальности 01.04.03 – радиофизика

Актуальность работы. Исследования распространения высокочастотных упругих волн в пьезоэлектрических кристаллах и слоистых структурах, в том числе, в условиях конечных статических воздействий были обусловлены как необходимостью изучения нелинейных свойств твердых тел, так и, в значительной степени, разработкой эффективных устройств пьезотехники, акустоэлектроники и сенсоров. При этом наметились пути использования линейных и нелинейных эффектов в кристаллах для создания новых классов устройств и развития представлений о природе ангармонизма межатомных взаимодействий. Тем самым были стимулированы исследования в области новых материалов и типов волн, которые были необходимы для высокостабильных узкополосных фильтров, линий задержки, генераторов и привели к освоению высокочастотных диапазонов, включая СВЧ. Особенный интерес учёных и инженеров в начале XXI в. оказался сконцентрирован на исследованиях, связанных с распространением акустических волн в тонкоплёночных пьезоэлектрических слоистых структурах, перспективных с точки зрения дизайна СВЧ акустоэлектронных устройств.

Затронутый круг проблем в представленной диссертации – исследования условий распространения упругих волн в пьезокристаллах и структурах в условиях статических

воздействий (электрического поля, механического одноосного механического напряжения), прежде всего, необходим для создания управляемых устройств акустоэлектроники либо коррекции их рабочих характеристик. Применение акустических волн, распространяющихся в пьезоэлектрических пластинах и слоистых пьезоэлектрических структурах, подвергнутых внешним статическим воздействиям, может существенно расширить функциональные возможности подобных устройств. Таким образом, описание взаимосвязанных вышеназванных проблем представляет как теоретический интерес для понимания процессов, происходящих в конечно-деформированной пьезоэлектрической среде при распространении упругой волны, так и практический — для создания и оптимизации характеристик управляемых акустоэлектронных устройств, что позволяет, несомненно, считать выполненные в диссертационной работе Буркова Сергея Ивановича исследования актуальными.

Благодаря изложенному выше, тема диссертационной работы Буркова С.И. «Влияние внешних статических воздействий на распространение упругих волны в пьезокристаллах и слоистых структурах» является фундаментальной, актуальна, а также носит прикладной характер.

Диссертация состоит из Введения, 7-ми глав, Заключения, Списка литературы и приложения. Полный объем диссертации составляет 274 стр. текста, в том числе: рисунков – 101, таблиц – 9, библиографический список цитируемой литературы – 344 наименования. По теме диссертации опубликовано более 60 работ, в числе которых 31 статья, из которых 22 опубликованы в рецензируемых журналах из списка ВАК либо индексируемых в базе Web of Science, а также монография (в 2-х томах) в соавторстве.

Во введении приведен достаточно детальный аналитический обзор литературы, посвященный современному состоянию проблемы по теме диссертации. Обоснована актуальность выбранной темы диссертации, описана степень новизны и практической значимости полученных результатов работы.

В первой главе приведено описание теории распространении акустических волн в пьезоэлектриках в условиях внешних статических воздействий. Представлены уравнения состояния и уравнения движения пьезоэлектрической среды, подвергнутой влиянию однородных статических воздействий. Выполнен анализ влияния одноосного механического напряжения и постоянного электрического поля на анизотропию характеристик распространения объемных (ОАВ) и поверхностных (ПАВ) акустических волн в кристаллах тригональной и кубической сингонии. Показано, что изменение электромеханических свойств кристалла в результате статических воздействий подчиняется принципу симметрии Кюри. Особое внимание уделено характерным особенностям влияния статических

воздействий на поведение характеристик объемных акустических волн в окрестности акустических осей. Для совпадающих расчетных и экспериментальных ситуаций получено хорошее соответствие результатов.

Во второй главе представлен анализ отражения ОАВ от границы раздела «кристалл—вакуум» на примере кристаллов $Bi_{12}GeO_{20}$ и ниобата лития при различных типах падающей волны и приложения постоянного электрического поля. Выполнен расчет и анализ отражения и преломления объемных акустических волн от границы раздела двух кристаллических сред на примере структур «плавленый кварц — $Bi_{12}GeO_{20}$ » и «LiNbO₃ — $Bi_{12}GeO_{20}$ » при действии электрического поля.

В третьей главе рассмотрены закономерности отражения и преломления ОАВ от границы раздела при действии одноосного механического напряжения. Выполнен расчет и анализ отражения и преломления ОАВ от границы раздела двух кристаллических сред на примере структур «плавленый кварц — $Bi_{12}GeO_{20}$ » и «ниобат лития — $Bi_{12}GeO_{20}$ » при действии одноосного механического напряжения. Продемонстрирована трансформация типа отраженных и преломленных акустических волн в окрестности акустической оси при статическом воздействии на кристалл.

В четвертой главе получены необходимые для расчета дисперсионные уравнения для волн Лэмба и SH-волны, распространяющихся вдоль направления [100] в кристаллах точечной группы симметрии 23. Выполнен анализ изменения дисперсионных характеристик (коэффициентов управляемости, фазовой скорости, коэффициентов электромеханической связи (КЭМС)) упругой волны в пластинах кристаллов Bi₁₂GeO₂₀ и La₃Ga₅SiO₁₄ при различных вариантах приложения постоянного электрического поля. Практический интерес представляет оценка возможности создания управляемой линии задержки, также как и исследования температурных зависимостей фазовых скоростей волн Лэмба и SH-волн в пластине кристалла лангасита с возможностью компенсации температурных изменений внешним воздействием.

Выполнен анализ влияния постоянного электрического поля на взаимодействие (гибридизацию) акустических мод в пластине пьезоэлектрического кристалла. Показан механизм смены типа колебаний взаимодействующих мод в области гибридизации.

В пятой главе представлен анализ дисперсионной зависимости фазовых скоростей, углов отклонения потока энергии и КЭМС при различных вариантах приложения постоянного электрического поля в пьезоэлектрических слоистых структурах (ПСС) « $\mathrm{Bi}_{12}\mathrm{GeO}_{20}$ /плавленый кварц» и « $\mathrm{La}_3\mathrm{Ga}_5\mathrm{SiO}_{14}$ /плавленый кварц». Продемонстрирована трансформация объемной акустической волны в поверхностную недисперсионную упругую моду вследствие воздействия постоянного электрического поля.

В шестой главе детально проанализирован дисперсионный характер акустических мод в ПСС « Bi_{12} GeO₂₀/плавленый кварц», « La_3 Ga $_5$ SiO₁₄/плавленый кварц», «плавленый кварц/LiNbO₃» и «AlN/алмаз» при воздействии внешнего механического напряжения. На примере слоистой структуры «AlN/алмаз» и «ZnO/(001) Si» продемонстрировано хорошее совпадение расчетных и экспериментальных данных. Рассмотрена трасформация и взаимодействие (гибридизация) мод упругой волны на примере слоистой структуры « La_3 Ga $_5$ SiO₁₄/плавленый кварц» при воздействии одноосного механического напряжения.

Выполнена оценка вклада физической и геометрической нелинейности (статическая деформация в слое) кристалла в изменение характеристик упругой волны вследствие приложения механического напряжения к слоистой структуре, т.е. сделан учет нелинейных материальных тензоров кристалла 3-го порядка и статической деформации в слое либо учет только геометрической деформации слоя при воздействии механического напряжения.

В седьмой главе изложены основные методы и алгоритмы вычислений характеристик упругих волн в пьезоэлектрическом кристалле и ПСС, указаны разработанные автором оригинальные программные продукты.

В заключении приводятся основные выводы, соответствующие полученным в диссертации результатам.

Наиболее существенные результаты работы, обладающие научной новизной, состоят в следующем:

- 1. Впервые исследовано влияние статических воздействий (постоянного электрического поля и одноосного механического напряжения) на отражение и преломление ОАВ от границы раздела «кристалл-вакуум» и «кристалл-кристалл» при различных вариантах типа падающей волны. Продемонстрировано, что, вследствие изменения эффективной симметрии кристалла при приложении статических воздействий, особенно в окрестности акустических осей, может происходить трансформация типа отраженных и преломленных волн.
- 2. Получены аналитические соотношения и проведен теоретический анализ изменения дисперсионных характеристик, как для нулевых мод волн Лэмба, так и мод более высокого порядка в пластинах кристаллов кубической и тригональной симметрии при различных вариантах приложения постоянного электрического поля. Приведена классификация видов взаимодействия мод упругих волн. Впервые выполнен анализ влияния внешнего электрического поля на гибридизацию акустических мод в пластине пьезоэлектриче-

ского кристалла и в ПСС. Продемонстрирован механизм смены типа моды упругой волны при гибридизации.

- 3. Впервые выполнен анализ дисперсионной зависимости характеристик упругих волн, распространяющихся в $\Pi CC \ll Bi_{12}GeO_{20}/\Pi$ давленый кварц», « $La_3Ga_5SiO_{14}/\Pi$ давленый кварц» и «плавленый кварц/ $LiNbO_3$ », подвергнутых статическим воздействиям (однородное электрическое поле, одноосное механическое напряжение).
- 4. Впервые выполнен анализ значимости вклада физической и геометрической нелинейности в изменение характеристик упругой волны вследствие одноосного механического напряжения.

Практическая значимость полученных результатов

- 1. Представлен анализ анизотропии характеристик распространения ОАВ и ПАВ: коэффициентов управляемости фазовых скоростей, векторов поляризации упругой волны, групповых скоростей и углов отклонения потока энергии от волновой нормали при различных вариантах приложения внешнего воздействия (электрического поля и механического давления) в кристаллах силикосилленита, ниобата лития, лангасита и алмаза, которые представляют особый интерес для создания новых устройств акустоэлектроники.
- 2. Выполнен детальный анализ изменения дисперсионных характеристик волн Лэмба и SH-волны в пластинах кристаллов $Bi_{12}GeO_{20}$ и $La_3Ga_5SiO_{14}$ при различных вариантах приложения постоянного электрического поля. Указаны направления с максимальными и минимальными проявлениями влияния поля на характеристики распостранения упругой волны. Представлена оценка создания управляемой линии задержки сигнала, например на основе монокристалла лангасита.
- 3. Выполнен теоретический анализ температурных зависимостей характеристик упругих волн в пластине монокристалла лангасита в базовых и повернутых срезах. Отмечены наиболее перспективные направления распространения упругих волн с термостабильными свойствами. Выполнен анализ возможности компенсации температурных изменений фазовых скоростей упругих волн приложением постоянного электрического поля, что может представлять особый интерес для создания высокостабильных устройств акустоэлектроники.
- 4. Выполнен анализ дисперсионной зависимости характеристик упругой волны при различных вариантах приложения постоянного электрического поля либо одноосного механического напряжения в ПСС типа « ${\rm Bi}_{12}{\rm GeO}_{20}$ /плавленый кварц», « ${\rm La}_3{\rm Ga}_5{\rm SiO}_{14}$ /плавленый кварц», «плавленый кварц/ ${\rm LiNbO}_3$ » и « ${\rm AlN}$ /алмаз». Отмечены наиболее перспективные срезы и направления распространения акустических волн для создания акустоэлектронных устройств, сочетающие существенное значение КЭМС, ма-

лую величину отклонения потока энергии и значимые величины коэффициентов управляемости α_v . Продемонстрирована принципиальная возможность управлять распространением упругой волны в слоистой структуре по принципу «вкл/выкл» приложением электрического поля.

- 5. Выполнен анализ значимости вклада физической и геометрической нелинейности, вызванной действием механического напряжения на пьезоэлектрическую слоистую структуру в зависимости от сочетания вкладов нелинейностей, что важно при проектировании устройств пьезотехники.
- 6. Создан оригинальный программный комплекс, состоящий из ряда зарегистрированных программных продуктов и позволяющий рассчитать характеристики упругих волн различных типов (ОАВ, ПАВ Рэлея, Лява и Блюстейна-Гуляева, дисперсионных мод волны Лэмба) в пьезоэлектрических монокристаллах произвольной симметрии, в пластине пьезоэлектрика и многослойной пьезоэлектрической системе как в случае «линейного» кристалла произвольной точечной группы симметрии, так и в подвергнутом воздействию однородного электрического поля и/или одноосного механического напряжения. Разработанные программы позволяют также решать задачи определения анизотропии параметров распространения волн, включая исследование анизотропии внешних воздействий.

Достоверность выполненных автором исследований и полученных результатов подтверждена, прежде всего, использованием апробированных корректных вычислительных методов. Проводится также сравнение результатов, полученных численным способом с результатами, полученных аналитическими методами для отдельных высокосиметричных направлений кристаллографических классов. Кроме того, для совпадающих экспериментальной и расчётной ситуаций имеется качественное и количественное соответствие полученных в работе результатов с экспериментальными данными других авторов. Результаты расчётов, в которых в результате статических воздействий изменяется симметрия кристалла и, как следствие, симметрия его физических свойств, соответствуют принципу симметрии Кюри.

Результаты диссертации С.И. Бурковва могут быть рекомендованы для использования в Институте радиотехники и электроники имени В.А. Котельникова РАН (г. Москва); Институте прикладной физики РАН (г. Москва); Московском государственном университете имени М.В. Ломоносова (г. Москва); Акустическом институте имени Н.Н. Андреева (г. Москва); ОАО НИИ ЭЛПА (г. Москва, г. Зеленоград); ФГБНУ ТИСНУМ (г. Москва, г. Троицк), а также в других научных и учебных центрах, где ведутся исследования по близкой тематике.

Однако в рецензируемой работе имеются некоторые недостатки:

- 1. Непоследовательное употребление терминов «одноосное механическое давление» и «одноосное механическое напряжение». В расчётах автор, естественно, имел дело с одноосным механическим напряжением, изменяющим геометрию и электромеханические свойства кристаллов и ПСС.
- 2. В различных главах одна и та же величина, например модуль электрического поля, обозначается по-разному: \overline{E} (Глава 1) либо E и \overline{E} (Глава 2), что может искажать смысл и полученные результаты.
- 3. Представляется избыточной приводимая точность расчётных значений фазовых скоростей и коэффициентов управляемости (до 8-ми или 6-ти значащих цифр, см., например стр. 23 автореферата). Было бы желательно обосновать эти данные и более тщательно провести анализ допускаемых погрешностей.
- 4. Непонятно, почему в последовательно расположенных соотношениях координатные индексы обозначены либо заглавными латинскими (см., например, уравнения (2.2) и (2.3)), либо строчными буквами (см. граничные условия (2.4))?

Все указанные замечания носят частный характер и не влияют на общую высокую оценку диссертационной работы. Диссертационная работа Буркова С.И. является законченной научно-квалификационной работой на актуальную тему. Новые научные результаты, полученные диссертантом, имеют существенное значение для физической акустики, радиофизики, акустоэлектроники и пьезотехники. Новизна и достоверность полученных результатов не вызывает сомнения. Выводы и рекомендации достаточно обоснованы. Научные результаты диссертационной работы полностью отражены в опубликованных работах, а автореферат соответствует содержанию диссертации.

Основные результаты работы Буркова С.И. полностью отражены в достаточном количестве опубликованных статей в ведущих рецензируемых российских и международных научных журналах, рекомендованных ВАК Минобрнауки РФ и в 2-х томной монографии с его соавторством, хорошо известны научной общественности и апробированы на многочисленных всероссийских и международных конференциях и симпозиумах по теме диссертации. Практическая значимость полученных результатов подтверждается 8-ю свидетельствами о государственной регистрации программ для ЭВМ и баз данных. Совокупность полученных результатов можно квалифицировать как новое крупное научное достижение в области физической акустики и радиофизики.

Диссертационная работа Буркова С.И. «Влияние внешних статических воздействий на распространение упругих волны в пьезокристаллах и слоистых структурах» представ-

ляет собой научно-квалификационную работу, которая соответствует разделу 2 Паспорта специальности 01.04.03 — радиофизика (физико-математические науки) и критериям, установленным в п. 9 «Положения о порядке присуждения учёных степеней», утвержденного постановлением Правительства Российской Федерации от 24 сентября 2013 г. № 842, а ее автор заслуживает присуждения ученой степени доктора физико-математических наук по специальности 01.04.03 — радиофизика (физико-математические науки).

Диссертация и отзыв обсуждены и одобрены на Учёном совете ФГБНУ ТИСНУМ от « 03 » марта 2016 г. протокол № 2016-03-03.

1/4/

Отзыв составил:

ФИО: Буга Сергей Геннадьевич

Ученая степень: доктор физико-математических наук

Специальность: 01.04.07 – физика конденсированного состояния

Почтовый адрес: 108840, г. Москва, г.о. Троицк, ул. Центральная 7а

Телефон: 8 499 272 23 14, доб. 204

Адрес электронной почты: buga@tisnum.ru

Наименование организации: ФГБНУ ТИСНУМ

Должность: Зав. лабораторией

Сведения о ведущей организации

Полное наименование и со-	Федеральное государственное бюджетное научное учреждение	
кращенное наименование	«Технологический институт сверхтвердых и новых углеродных	
	материалов», ФГБНУ ТИСНУМ	
Место нахождения	г. Москва, г.о. Троицк	
Почтовые адрес, телефон,	108840, г. Москва, г.о. Троицк, улица Центральная, дом 7а	
адрес электронной почты	тел. (499) 400 62 25, (499) 272 23 14, (499) 272 23 15	
	e-mail: info@tisnum.ru	
Адрес официального сайта в	http://www.tisnem.ru	
сети «Интернет»		

Список

основных публикаций работников ведущей организации по теме диссертации в рецензируемых журналах

- 1. B.P. Sorokin, A.V. Telichko. Temperature coefficients of elastic constants of trigonal, hexagonal, and tetragonal crystals // IEEE Trans. on Ultrason, Ferroel. and Freq. Contr. 2012. V. 59, No 2. P. 311-314.
- 2. B.P. Sorokin, G.M. Kvashnin, A.P. Volkov, V.S. Bormashov, V.V. Aksenenkov, M.S. Kuznetsov, G.I. Gordeev, A.V. Telichko. AlN/single crystalline diamond piezoelectric structure as a High overtone Bulk Acoustic Resonator // Appl. Phys. Lett. 2013. V. 102, No 11. P. 113507.
- 3. A.V. Telichko, B.P. Sorokin. Extended temperature dependence of elastic constants in cubic crystals // Ultrasonics 2015. V. 64. P. 1-5.
- 4. V. Blank, S. Buga, V. Bormashov, V. Denisov, A. Kirichenko, V. Kulbachinskii, M. Kuznetsov, V. Kytin, G. Kytin, S. Tarelkin and S. Terentiev. Weak superconductivity in the surface layer of a bulk single-crystal boron-doped diamond//EPL, 108 (2014) 67014.
- 5. Б.П. Сорокин, А.В. Теличко, Г.М. Квашнин, В.С. Бормашов, В.Д. Бланк. Исследования СВЧ акустического затухания в многочастотном резонаторе на объемных акустических волнах на основе синтетического монокристалла алмаза // Акуст. журн. − 2015. Т. 61, № 6. С. 705-717.
- 6. В.Н. Денисов, Б.Н. Маврин, Н.Р. Серебряная, Г.А. Дубицкий, В.В. Аксененков, А.Н. Кириченко, Н.В. Кузьмин, Б.А. Кульницкий, И.А. Пережогин, В.Д. Бланк. Особенности структуры и колебательных спектров системы алмаз-лонсдейлит // Изв. ВУЗ'ов, серия Хим. хим. техн. − 2011. − Т. 54, № 7. − С: 10-13.
- 7. Т.А. Иванова, Б.Н. Маврин. Первопринципные исследования структурных, упругих и колебательных свойств гексагональных политипов алмаза // Изв. ВУЗ'ов, серия Хим. хим. техн. 2014. Т. 57, № 5. С. 32-39.
- 8. В.Д. Бланк, В.М. Прохоров, Б.П. Сорокин, Квашнин Г.М., Теличко А.В., Гордеев Г.И. Упругие постоянные второго и третьего порядков керамики В4С // Φ TT. -2014. T. 56, \mathbb{N} 8. C. 1523-1527.
- 9. Б.П. Сорокин, Г.М. Квашнин, В.С. Бормашов, А.П. Волков, А.В. Теличко, Г.И. Гордеев, А.В. Голованов. Технология изготовления СВЧ пьезоэлектрических преобразователей на основе пленки AlN, нанесенной на подложку из синтетического монокристалла алмаза // Изв. ВУЗ'ов, серия Хим. хим. техн. −2014. − Т. 57, № 5. − С. 17-21.
- 10.Т.А. Иванова, Б.Н. Маврин Механические и колебательные свойства легированного азотом алмаза // Изв. ВУЗ'ов, серия Хим. хим. техн. -2013. Т. 56, № 7. С. 67-71.

Ученый секретарь		
ФГБНУ ТИСНУМ	1 L	Батов Д.В
97p		
(печать)		
NHUM * WELL		

ВЫПИСКА

из протокола «2016-03-03» от 3 марта 2016г. заседания Ученого совета ФГБНУ ТИСНУМ

Председатель: Бланк В.Д.

Секретарь:

Батов Д.В.

Присутствовали члены Ученого совета: В.С. Бормашов,

С.Г. Буга,

Б.А. Кульницкий,

С.Н. Поляков,

Б.П. Сорокин

С.А. Перфилов,

М.Ю. Попов,

А.С. Усеинов,

С.А. Терентьев,

Н.Р. Серебряная.

Повестка дня

1. Представление диссертационной работы Буркова Сергея Ивановича «Влияние внешних статических воздействий на распространение упругих волн в пьезокристаллах и слоистых структурах», на соискание ученой степени доктора физико-математических наук по специальности 01.04.03 – радиофизика

Слушали

- С.И. Буркова с докладом по результатам диссертационной работы.
- Батова Д.В. с проектом отзыва.

В прениях участвовали:

д.ф.-м.н. Сорокин Б.П., д.ф.-м.н. Кульницкий Б..А., д.ф.-м.н. Попов М.Ю.

Решили

Утвердить положительный отзыв на диссертационную работу Буркова Сергея Ивановича «Влияние внешних статических воздействий на распространение упругих волн в пьезокристаллах и слоистых структурах», на соискание ученой степени доктора физико-математических наук по специальности 01.04.03 радиофизика.

Результаты голосования

за - 12, против - 0, воздержались - 0.

Секретарь Ученого совета

Д.В. Батов