Usbecmus AH CCCP Cepus gouzureckan T. 25 N12 1961

TACTHORIA DESCRIPTION NO. TO NOT THE PRESE DESCRIPTION DANT конфигурайци доменной струкууры. И связы с этим в задисимости от сис-

л. в. киренский, а. и. дрокин, в. д. дылгеров, н. и. судаков в Е. К. ЗАРИРОВА

ТЕМПЕРАТУРНАЯ ЗАВИСИМОСТЬ ПЕРВОЙ КОНСТАНТЫ АНИЗОТРОПИИ И МАГНИТНАЯ СТРУКТУРА железо-марганцевых ферритов

разнатиятиятие фероатов пероменным магастным полем пригод Латови в рономор разласт до Введение натог то округатов и ситвонов

В настоящее время значительное внимание исследователей уделяется изучению энергетической анизотропии ферритов [1], ее температурной зависимости [2—3] и доменной структуры ферритовх кристаллов [4—9].

В 1950 г. Бикфорд [2] методом измерений резонансной частоты определил температурную зависимость первой константы анизотропии для природного магнетита. С ростом температуры до -80° константа анизотропии уменьшалась, а затем, при дальнейшем нагревании образца, несколько возрастала.

Температурная зависимость первой константы анизотропии на кобальтовых ферритах была исследована Перекалиной и Аскоченским [3]. Ими было показано, что эта зависимость подчиняется экспериментальному закону Брюхатова — Киренского $K = K_0 e^{-aT^2}$, (1) где K — значение первой константы анизотропии при температуре T° К,

 K_0 — значение K при 0°K, a — постоянная. Теоретическое исследование температурной зависимости констант анизотропии для ферритов дано в работе Турова и Мицека [10].

В настоящей работе методом мехнических моментов проведено исследование температурной зависимости первой константы магнитной анизотропии монокристалла железо-марганцевого феррита, а также произведены наблюдения его доменной структуры. Феррит такого состава типичен для большинства моноферритов со структурой типа шпинели; у него в отличие от кобальтовых ферритов направления легкого намагничивания параллельны осям типа [111]. стерезиоа, т. е. иронодит к лезучению бозьшего Р. в Ме — Мъзбольнта

ан этод Эксперимент эканалино ...коньодо ракак?

Для изготовления образцов были использованы монокристаллы марганцевых ферритов MnFe₂O₄ с избытком марганца (25% гаусманита Mn₃O₄). Монокристаллические бульки были выращены А. А. Поповой на аппарате Вернейля в Институте кристаллографии АН СССР. Из этих

булек при помощи стальных заточенных трубок были выточены шарики диаметром от 4 до 8 мм.

Измерения первой константы магнитной анизотропии и ее температурной зависимости проводились методом определения вращательных моментов, действующих на образец, помещенсый в однородное магнитное поле. Поле создавалось вращающимся электромагнитом. Однородность поля в межполюсном пространстве определялась баллистическим методом. Углы поворота электромагнита фиксировались при помощи специального лимба с точностью до 0,5 мин. Измерение механических моментов производилось при помощи анизометра системы Акулова с несколько измененным тензометром. Чувствительность анизометра равнялась $1,3\cdot10^2$ эрг см⁻³ на 1 мм шкалы. Ошибка при измерении механических моментов не превышала 2%. Погрешность при измерениях температуры была не более $\pm 2^\circ$.

Оси легкого намагничивания определялись при помощи специальноизготовленных кардановых подвесов. Механические моменты определялись в плоскости (100).

Вначале были сняты кривые механических моментов в зависимость от угла между направлением поля и осью [100] в разных полях при комнатной температуре и при температуре жидкого кислорода. Затем фиксировалось непрерывное изменение максимального крутильного момента в этой плоскости с изменением температуры при нагревании от —183° до $+300^{\circ}$ и при последующем охлаждении до -183° . Напряженностьмагнитного поля при этом равнялась 5100 Ос, что обеспечивало техническое насыщение образца.

Наблюдение доменной структуры проводилось на плоскости (110); для этого на шариках были сточены и тщательно отшлифованы поверхности плоскостей этого типа, после чего шарики были прокипячены в 30%-ном растворе серной кислоты.

Порошковые фигуры получались по способу Элмора [11]. Наблюдение и фотографирование порошковых фигур проводили при помощи микроскопа МБИ-6 при линейном увеличении 117 и 234.

Результаты эксперимента и их анализ

Кривые механических моментов как при комнатной температуре, так и при температуре жидкого кислорода имели форму совершенно правильных «синусоид» с периодом $\pi/2$ (с той лишь

разницей, что при низких температурах резко возрастала их амплитуда).

Образование петель между кривыми моментов при прямом и обратном вращении поля свидетельствует о наличии потерь на гистерезис в сильных вращающихся полях.

Зависимость величины максимального механического момента в плоскости (100) от напряженности внешнего магнитного поля при температурах —183° и 22° показана на рис. 1,

Рис. 1. Зависимость максимального механического момента от напряженности внешнего магнитного поля: *I* — при 22°; *2* — при —183°

из которого видно, что при температуре 22° в полях до 750 Ос момент практически равен нулю. Значит, в полях до 750 Ос железо-марганцевый феррит энергетически изотропен. В полях от 750 до 1000 Ос величина момента возрастает, достигает предельных значений 0,71 · 10⁻⁴ эрг см⁻³ и при

дальнейшем увеличении поля остается постоянной. Резкое возрастание механического момента при температуре кипящего кислорода наблюдается в магнитных полях до 3000 Ос. Из рис. 1 видно также, что с понижением температуры от 20° до —182° механический момент возрастает приблизительно в десять раз.

Поскольку исследования проводились в плоскости (100), то подсчет первой константы магнитной анизотропии проводился по формуле

$$M = \frac{K_1}{2}\sin 4\psi, \qquad (2)$$

где M — механический момент, K_1 — первая константа магнитной анизотропии, ψ — угол между H и направлением [100]. Для $\psi = 22^{\circ}30'$ $K_1 = 2M$.

Температурная зависимость первой константы магнитной анизотропии представлена на рис. 2. Из этого рисунка видно, что для железо-марганцевого феррита K_1 отрицательна и

в интервале температур от -183°

до 220° убывает по абсолютной величине с ростом температуры, оставаясь все время отрицательной.

На рис. З представлена зависимость $\ln K_1$ от T^2 . Линейный характер этой зависимости говорит о справедливости и для данного ітипа кристалпов экспериментального закона Брюхатова — Киренского. Экстраполяция прямой к абсолютному нулю дает $K_0 = 17 \cdot 10^4$ эрг см⁻³.

Исследования доменной структуры показывают, что характер структуры зависит от направления размагничивания образца. При размагничивании образца вдоль направления [110] на плоскости (110) порошковые фигуры имеют вид толстых параллельных линий, направленных перпендикулярно к одной из осей легкого намагничивания (рис. 4, *a*). Между основными линиями наблюдается вторичная клинообразная структура, свидетельствующая о том, что поверхность образца несколько отклонена от кристаллографической плоскости (110).

При намагничивании в направлении [110] в полях до 400 Ое изменений доменной структуры не наблюдается (рис. 4, δ). При дальнейшем увеличении поля до 600 Ое (рис. 4, ϵ) происходят изменения лишь во вторичной структуре. Начиная с 750 до 1000 Ое (рис. 4, ϵ , ∂) происходит резкое изменение доменной структуры. В этом интервале полей возникают новые границы, идущие перпендикулярно второму направлению легкого намагничивания. При этом между новыми границами также наблюдается вторичная клинообразная структура. В полях около 1000 Ое (рис. 4, ϵ)

Рис. 4. Доменная структура на плоскости (110): a - H = 0; b - H = 400 Oe; b - H = 600 Oe; c - H = 760 Oe; b - H = 800 Oe; e - H = 1000 Oe

процесс установления новых границ заканчивается и старые границы почти исчезают. Вновь образованные границы размываются и исчезают в поле около 1300 Ос.

Не везде на указанной плоскости наблюдается появление новых границ. В таких местах, где новых границ не возникает, после размагничивания вдоль [110] устанавливается исходная доменная структура, аналогичная предыдущей. С ростом поля до 723 Ое изменений в структуре не наблюдается, если не считать некоторых изменений во вторичной клинообразной структуре. При дальнейшем намагничивании основные линии

1475

местами размываются и в поле около 1300 Ос исчезают. Никаких смещений границ не наблюдается.

Сопоставление изменений механических моментов и доменной структуры с нарастанием поля показывает, что наиболее резкие изменения доменной структуры наблюдаются в полях, соответствующих резкому возрастанию анизотропии кристалла.

Какие-либо модели как самой структуры, так и ее изменения с полем построить весьма затруднительно.

В заключение выражаем глубокую признательность А. А. Поповой за любезное предоставление образцов монокристаллов ферритов.

Институт физики Сибирского отделения Академии наук СССР Институт цветных металлов им. М. И. Калинина Красноярский педагогический институт

Литература

- 1. Bozorth R. M., Tilden E. F., Williams A. J., Phys. Rev., 99, 6, 178 (1955)
- 2. Bickford L. R., Phys. Rev., 78, 449 (1950).
- Перекалина Т. М., Аскоченский А. А., статья в сб.: Ферриты. Изд. АН БССР, Минск, 1960.
- 4. Bates L. F., Craik D. J., Griffiths P. M., Isaac E. D., Proc. Roy. Soc., A 253, 1 (1959).
- Α. Williams G. W., Canad. 5. Smith W., J. Phys., 38, 9, 1187 (1960).
- 6. Шур Я. С., Кандаурова Г. С., статья в сб.: Ферриты. Изд. АН БССР, Минск, 1960.
- 7. Дылгеров В. Д., Дрокин А. И., Кристаллография, 5, 6, 945 (1960). 8. Старцева И. Е., Шур Я. С., Физ. металлов и металловедение, 2, 1, 158 (1961).
- Дрокин А.И., Дылгеров В. Д., Золотарева Ю. М., Физика твердого тела, 3, 2, 553 (1961).
 Туров Е.А., Мицек А.И., статья в сб.: Ферриты. Изд. АН БССР, Минск, 1960.
- 11. Elmore W. S., Phys. Rev., 51, 10, 1092 (1938); 62, 468 (1942).