На правах рукописи

МИХАЛЕВА Екатерина Андреевна

ТЕПЛОФИЗИЧЕСКИЕ ИССЛЕДОВАНИЯ КАЛОРИЧЕСКИХ ЭФФЕКТОВ В НЕКОТОРЫХ КИСЛОРОДНЫХ ФЕРРОИКАХ

Специальность 01.04.07 – Физика конденсированного состояния

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук

Красноярск 2013

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте физики им. Л.В. Киренского Сибирского Отделения Российской академии наук и Федеральном государственном автономном образовательном учреждении высшего профессионального образования «Сибирский федеральный университет»

Научный руководитель:	доктор физико-математических наук профессор Флёров Игорь Николаевич
Официальные оппоненты:	Петраковский Герман Антонович доктор физико-математических наук профессор гл. научный сотрудник ИФ СО РАН
	Шнайдштейн Илья Владимирович кандидат физико-математических наук

Ведущая организация:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования
"Воронежский государственный технический университет"

доцент МГУ

Защита состоится "___" 2013 года в ___ часов на заседании диссертационного совета Д. 003.055.02 при ИФ СО РАН по адресу: 660036, Красноярск, Академгородок, 50, строение 38.

С диссертацией можно ознакомиться в библиотеке ИФ СО РАН.

Автореферат разослан "____" ____ 2013 г.

Ученый секретарь диссертационного совета доктор физ.-мат. наук _____

Втюрин А.Н.

Общая характеристика работы

Актуальность работы

В подавляющем большинстве случаев в промышленности, науке и быту охлаждение в интервале температур от криогенных до комнатной и выше осуществляется c помощью довольно громоздких газо-жидкостных Несмотря ожижительных И холодильных установок. на постоянное совершенствование рефрижераторов, их применение находится в противоречии с такими требованиями к холодильным циклам и хладагентам, как высокая эффективность, надежность, экологическая безопасность, дешевизна, бесшумность, малогабаритность и т.д. В немалой степени это относится, например, к быстро развивающимся микро-электро-механическим системам и миниатюризации информационным технологиям. Процесс И развития многофункциональности микросенсоров, актюаторов, портативных интегральных систем и Т.Д. сопровождается возрастанием количества выделяемого в них тепла за счет роста плотности тока в интегральных схемах. Возникшие высокие требования к охлаждающим устройствам не могут быть в полной мере удовлетворены громоздкими газовыми рефрижераторами и вентиляторами.

В последнее десятилетие активные исследования сосредоточены на поиске и разработке различного вида материалов, на основе свойств которых возможно создание альтернативных способов охлаждения. В результате сложилось обоснованное представление о возможности реализации эффективного обратного термодинамического цикла на основе калорических эффектов в твердых телах.

Калорические эффекты (КЭ) связаны с обратимым изменением температуры или энтропии термодинамической системы под воздействием обобщенного внешнего поля (электрического, магнитного или механических напряжений) соответственно в адиабатных или изотермических условиях. Это обусловлено взаимодействием поля микроструктурными явление с составляющими самого тела (ионами, ядрами и т.д.). В соответствии с физической природой материала и внешнего сопряженного поля существуют электро- (ЭКЭ), магнето- (МКЭ) и баро- (БКЭ) калорический эффекты. В течение длительного времени существовало мнение о малой перспективности практических применений перечисленных КЭ в силу незначительной их величины. Однако наиболее оптимистически настроенные исследователи продолжали поиски, во-первых, путей совершенствования свойств известных соединений, во-вторых, новых перспективных материалов. В результате обнаружено, что наиболее многообещающими являются материалы - ферроики (ферромагнетики, сегнетоэлектрики, сегнетоэластики), в которых ΜΟΓΥΤ наблюдаться значительные величины КЭ в области фазовых переходов.

Наибольшее число публикаций посвящено МКЭ [1]. В последние годы интенсивно стали развиваться работы по изучению сегнетоэлектрических хладагентов в виде объемных материалов, тонких пленок и тонкопленочных слоистых структур [2]. Менее всего изучен БКЭ в твердых телах, но и он

представляет значительный интерес, особенно в сегнетоэластиках [4]. Анализ многочисленных литературных данных позволяет сделать вывод о безусловной перспективности развития технологии твердотельного охлаждения [5]. Этот метод обладает многочисленными достоинствами, одним из которых является возможность использования малых количеств экологически безопасного хладагента, что позволяет изменять температуру в локальной области и на значительно развитой поверхности.

Удивительно, но до сих пор почти нет сведений об исследовании КЭ разной физической природы в одном и том же материале. Хотя очевидно, что калорическая эффективность хладагента может быть увеличена, если существует возможность воздействия на него несколькими внешними полями одновременно. К таким материалам относятся мультиферроики – класс твердых тел, в которых сосуществуют хотя бы два из трех физических явлений магнитной, электрической или механической природы [6]. Таким образом, в мультиферроиках могут быть реализованы мультикалорические эффекты. Однако такого рода явления до настоящего времени исследованы только в некоторых магнитных сплавах [7].

Среди прочих оставались неисследованными вопросы о взаимосвязи БКЭ и ЭКЭ при сегнетоэлектрических фазовых переходах. Отсутствовали сведения об ЭКЭ, МКЭ и БКЭ в объемных композитах ферромагнетик-сегнетоэлектрик.

Цели и задачи работы

Целью настоящей работы является исследование электро-, магнето- и барокалорических эффектов в ряде кислородных ферроиков, испытывающих сегнетоэлектрические и ферромагнитные фазовые переходы.

В соответствии с этим сформулированы следующие задачи.

1) Исследование теплоемкости, диэлектрической проницаемости, теплового расширения гидросульфатов Rb_x(NH₄)_{1-x}HSO₄ и PbTiO₃, претерпевающих сегнетоэлектрические фазовые переходы. Прямые измерения и анализ ЭКЭ и БКЭ на основе электрического уравнения состояния, диаграмм температура – давление и энтропия-температура-давление.

2) Исследование теплоемкости, теплового расширения и восприимчивости к давлению и прямые измерения МКЭ в ферромагнетике La_{0,7}Pb_{0,3}MnO₃ и объемных композитах (x)La_{0,7}Pb_{0,3}MnO₃ - (1-x)PbTiO₃. Определение ЭКЭ и БКЭ на основе электрического уравнения состояния, диаграмм температура – давление и энтропия-температура-давление.

3) Анализ калорической эффективности исследованных кристаллических и композиционных ферроиков, претерпевающих фазовые переходы разной физической природы.

Выбор объектов исследований

1. Твёрдые растворы гидросульфатов $Rb_x(NH_4)_{1-x}HSO_4$. Сегнетоэлектрики этого семейства изучены достаточно подробно и могут рассматриваться в качестве модельных объектов. Сведения об ЭКЭ и БКЭ при фазовых переходах отсутствуют. Наличие в одном кристалле (NH₄HSO₄) двух фазовых переходов разного рода сегнетоэлектрической природы позволяет выяснить влияние катионного замещения на стабильность кристаллических фаз и калорические эффекты путем прямых измерений и расчетов в рамках термодинамической теории.

2. PbTiO₃. Несмотря на сравнительно высокую степень изученности, барическом оставались невыясненными вопросы 0 коэффициенте И калорической эффективности, что представляет несомненный интерес в связи с практическим применением широким материалов на основе ЭТОГО сегнетоэлектрика.

3. La_{0,7}Pb_{0,3}MnO₃. Теплофизические свойства кристаллов семейства манганита исследовались эпизодически. МКЭ определялся в основном косвенным путем. БКЭ не исследовался совсем. Исследования теплоемкости, теплового расширения, восприимчивости к давлению и калорических эффектов в La_{0,7}Pb_{0,3}MnO₃ являются оригинальными.

4. Композиты (x)La_{0,7}Pb_{0,3}MnO₃ - (1-x)PbTiO₃. Сведения об исследовании КЭ в объемных композитах ферромагнетик-сегнетоэлектрик отсутствуют.

Все изученные в настоящей работе соединения были приготовлены в ИФ СО РАН Т.Н. Давыдовой, К.А. Саблиной и Н.В. Михашенок. Паспортизация образцов проводилась методом рентгеновского дифрактометра.

Научная новизна

Новизна исследований кислородных ферроиков состоит, во-первых, в получении подробных данных о теплофизических свойствах твердых растворов $Rb_x(NH_4)_{1-x}HSO_4$, PbTiO₃, $La_{0.7}Pb_{0.3}MnO_3$ и композитов (x) $La_{0.7}Pb_{0.3}MnO_3$ - (1-x)PbTiO₃ в широком интервале температур, и, во-вторых, во впервые выполненных прямых измерениях и оценках калорических эффектов разной физической природы. Показано, что калорическая эффективность материала может быть увеличена за счет одновременного использования нескольких внешних полей или путем создания мультикалорических композитов сегнетоэлектрик - ферромагнетик.

Научная и практическая значимость

Новые подробные данные о теплофизических свойствах и калорических эффектах титаната свинца и манганита, используемых в настоящее время при создании материалов для монофункциональных устройств различного представления назначения, позволят расширить 0 дальнейших путях целенаправленного управления синтезом и соответственно свойствами как самих исходных материалов, так и твердых растворов, а также композитов на Результаты, полученные при исследовании калорической ИХ основе. эффективности кислородных ферроиков, будут способствовать развитию разработкой, технических направлений, связанных с созданием И использованием новых твердотельных хладагентов на основе кристаллических, керамических и композиционных материалов.

Сведения о теплофизических свойствах и калорических эффектах могут

быть рекомендованы в качестве справочных данных.

обеспечивается Достоверность полученных результатов использованием высокоточных методов исследования теплофизических свойств. образцов, надежной воспроизводимостью высоким качеством результатов, удовлетворительным согласием экспериментальных И рассчитанных теплофизических свойств и КЭ в исследованных ферроиках. Данные об ЭКЭ и БКЭ в PbTiO₃ согласуются с результатами первопринципных расчетов [8].

Основные положения, выносимые на защиту:

1. Экспериментальные результаты калориметрических и дилатометрических исследований твердых растворов $Rb_x(NH_4)_{1-x}HSO_4$, PbTiO₃, La_{0.7}Pb_{0.3}MnO₃ и композитов (x)La_{0.7}Pb_{0.3}MnO₃ - (1-x)PbTiO₃.

2. Экспериментальные и расчетные данные о МКЭ, ЭКЭ и БКЭ и возможность надежного определения калорических эффектов в кислородных ферроиках путем анализа данных в рамках термодинамической теории фазовых переходов, электрического уравнения состояния и диаграммы энтропиятемпература-давление.

3. Результаты интерпретации полученных в работе данных и оценки перспективности использования исследованных ферроиков в качестве твердотельных хладагентов.

Апробация работы:

Результаты работы неоднократно обсуждались на семинарах лаборатории кристаллофизики ИФ СО РАН и были представлены на следующих конференциях:

 Межвузовская региональная научная конференция студентов, аспирантов и молодых ученых-физиков НКСФ-ХХХVII (Красноярск, 2008); НКСФ-ХХХVIII (Красноярск, 2009); НКСФ-ХХХIХ (Красноярск, 2010);

– Всероссийский семинар кафедр вузов по теплофизике и теплоэнергетике, Красноярск, 2009;

– Школа-конференция молодых ученых «Неорганические соединения и функциональные материалы», Новосибирск, 2010;

– Международный междисциплинарный симпозиум «Порядок, беспорядок и свойства оксидов» ОDPO-13, Сочи, п. Лоо, 2010;

 XIX Всероссийская конференция по физике сегнетоэлектриков (ВКС XIX), Москва, 2011;

- 12th European Meeting on Ferroelectricity, Bordeaux, France, 2011;

- International Conference "Functional materials and nanotechnologies", Riga, Latvia, 2012;

– II Международная научно техническая конференция «Современные методы и средства исследований теплофизических свойств веществ», Санкт-Петербург, 2012.

<u>Личный вклад автора</u>

Автором совместно с руководителем определен круг решаемых задач и набор объектов исследования.

Самостоятельно выполнены: анализ состояния проблемы калорических эффектов разной физической природы; исследования теплоемкости, диэлектрической проницаемости и КЭ в гидросульфатах. Автором при участии коллег проведены исследования МКЭ и теплофизических свойств титаната свинца, манганита и системы композитов.

Автором выполнены анализ и интерпретация результатов всех экспериментальных исследований. Проведено сравнение полученных результатов по КЭ с литературными данными и оценена перспективность практического использования исследованных в работе материалов.

<u>Публикации</u>

В диссертационную работу включены результаты, опубликованные в 6 статьях в центральной и зарубежной печати.

Структура и объем диссертации

Диссертация состоит из введения, шести глав, заключения и библиографии. Общий объем диссертации 128 страниц, включая 52 рисунка, 7 таблиц и список литературы из 111 наименований.

Исследования проводились при финансовой поддержке грантов Президента РФ для поддержки ведущих научных школ РФ (НШ-4137.2006.2; НШ-4645.2010.2; НШ-4828.2012.2.), Красноярского краевого фонда поддержки научной и научно-технической деятельности *"Калорические эффекты и фазовые переходы в системе объемных композиционных материалов ферромагнетик - сегнетоэлектрик (x)La_{0,7}Pb_{0,3}MnO₃ - (1-x)PbTiO₃", а также в рамках проектов РФФИ (№ 09-02-98001- Сибирь; 12-02-00056-а; 12-02-09234-моб_3; 12-02-31253 мол_а_2012) и ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009-2013г. (№ 8379).*

Содержание работы

Во введении диссертационной работы обоснована актуальность выбранной темы, сформулированы цели исследований и основные положения выносимые на защиту, охарактеризована научная новизна и практическая ценность полученных результатов.

<u>В первой главе</u> изложены суть, история и современное состояние исследований КЭ в ферроиках. Значительный прогресс в создании обширного круга материалов магнитной природы и сравнительная простота реализации магнитных полей большой напряженности долгое время предопределяли преимущественный интерес исследователей к МКЭ. Одна из причин пониженного внимания к исследованию и использованию ЭКЭ была связана,

во-первых, с его малой величиной и, во-вторых, с низкой стойкостью диэлектриков к электрическому полю. Частичное решение этой проблемы было найдено в последние годы за счет активизации исследований тонких сегнетоэлектрических пленок и слоистых структур на их основе. В этих материалах возможна реализация больших электрических полей при небольших напряжениях, что приводит к значительному увеличению ЭКЭ.

БКЭ более универсален по сравнению с МКЭ и ЭКЭ, так как может быть реализован в самых разнообразных материалах, благодаря тому, что давление оказывает влияние на подсистемы любой физической природы термодинамической системы в целом. В твердых телах БКЭ изучен в значительно меньшей степени по сравнению с МКЭ и ЭКЭ.

Рассмотрены дифференциальные уравнения термодинамики И феноменологические представления КЭ 0 И фазовых переходах. Продемонстрирована неразрывная связь между природой, механизмом и родом фазовых превращений и КЭ, что определяет необходимость совместного изучения обоих явлений в одном и том же материале. Именно такой подход способствует развитию фундаментальных представлений о перспективных путях управления соотношением между составом, структурой, параметрами фазовых превращений и разработке способов повышения калорической эффективности материалов, представляющих широкий практический интерес.

Рассмотрен и охарактеризован ряд методов, используемых для определения КЭ.

Выполнен краткий обзор калорических параметров ферроидных материалов, исследованных в последнее время и рассматриваемых в качестве твердотельных хладагентов. Рассмотрены перспективных некоторые холодильных циклов, реализуемых на основе КЭ. Главное преимущество подобных рефрижераторов в том, что изменение энтропии на единицу объёма в твердых материалах в 6-8 раз выше, чем в газе. Высокая эффективность твердотельных холодильников обусловлена тем, что нагревание и охлаждение КЭ являются практически обратимыми термодинамическими 3a счет процессами, в отличие от процессов сжатия и расширения пара в рабочем цикле парогазового холодильника.

Краткий обзор проблемы КЭ в твердых телах позволяет заключить, что решены далеко не все вопросы поиска новых хладагентов и совершенствования существующих. Остаются открытыми вопросы об исследовании разной природы КЭ при одном фазовом переходе в моноферроиках, а также калорических/мультикалорических явлений в композитах.

На основе анализа современного состояния изученности КЭ в ферроиках и их практического использования сформулированы задачи настоящей работы.

Во второй главе обоснован выбор экспериментальных методов для решения поставленных задач и представлено их краткое описание. Поисковые исследования тепловых эффектов выполнялись на дифференциальном сканирующем микрокалориметре ДСМ-10М. Линейное расширение исследовано на индукционном дилатометре DIL-402C. Восприимчивость к

давлению исследовалась с помощью установки для исследований фазовых Т-р диаграмм на основе ДТА. Высокотемпературные измерения теплоемкости выполнены на синхронном термоанализаторе STA 449 С Jupiter. Наибольшее внимание уделено описанию адиабатического калориметра, который является основным инструментом, позволившим получить информацию о теплоемкости, энтропии, ЭКЭ, МКЭ и БКЭ. Представлены параметры, определяющие погрешности измерений температуры, теплоемкости, коэффициента теплового расширения и КЭ.

<u>В третьей главе</u> изложены результаты исследования теплофизических свойств и калорических эффектов в сегнетоэлектриках типа порядокбеспорядок (Rb_x(NH₄)_{1-x}HSO₄) и смещения (PbTiO₃).

В разделе 3.1 представлены сведения о кристаллах семейства гидросульфата аммония, испытывающих последовательные или единичные фазовые переходы сегнетоэлектрической природы. Показано, что оставался открытым вопрос о характере влияния катионного замещения в твердых растворах $Rb_x(NH_4)_{1-x}HSO_4$ на устойчивость антисегнетоэлектрической фазы *P*-1 и характер изменения энтропии при переходах разной физической природы. Сведения о прямых измерениях ЭКЭ и БКЭ и их определении расчетным путем в кристаллах семейства гидросульфата аммония отсутствовали вовсе.

Исследования твердых растворов методом ДСМ-10М показали, что температура перехода $Pc \rightarrow P$ -1 понижается с ростом x, а величина энтальпии (энтропии) практически не меняется (рис. 1а). Эти данные в совокупности с данными измерений на адиабатическом калориметре позволили построить фазовую диаграмму Т-x (рис. 1б). В отличие от линейного снижения температуры T₁, фазовый переход при T₂ характеризуется нелинейной границей раздела фаз *Pc* и *P*-1 и отсутствует уже в образце с x=0.33.

Рис. 1. Зависимость избыточной теплоемкости при переходе $Pc \rightarrow P-1$ в твёрдых растворах $Rb_x(NH_4)_{1-x}HSO_4$ ($x_{exp} = 0$ (1); 0.02 (2); 0.04 (3)) (а). Фазовая диаграмма Т-х (б). Пунктирная линия – фазовая граница, ожидаемая из данных для x = 0 - 0.04. Штрихпунктирная линия – условное ограничение существования фазы *P*-1.

Выполнены прямые измерения интенсивного ЭКЭ для составов с x = 0 и 0.33. Обнаружена высокая воспроизводимость (~90%) экспериментально определенной величины ΔT_{3KC} в процессах включения и выключения поля Е (рис. 2a). Пересчет ΔT_{3KC} в интенсивный ЭКЭ ΔT_{AD} произведен с учетом соотношения теплоемкостей фурнитуры C_{Φ} и образца C_{OEP} по уравнению $\Delta T_{AD} = \Delta T_{3KC} [1 + (C_{\Phi}/C_{OEP})]$ (рис. 2б).

Рис. 2. Температурные зависимости ΔT_{3KC} для NH₄HSO₄ при включении (1) и выключении (2) поля E=1.5 кB/см (а). Зависимости ΔT_{3KC} (1) и ΔT_{AD} (2) в процессе включения поля E=1.5 кB/см (б).

Установлена применимость теории фазовых переходов Л.Д. Ландау к описанию аномальной теплоемкости образцов с x = 0 и 0.33. Варьирование интервала температур $\Delta T_{\Pi} = T_1 - T$, включаемого в анализ, не оказало значительного влияния на коэффициенты термодинамического потенциала, что свидетельствовало о высокой точности их определения (5–8 %).

На основе электрического уравнения состояния построены термодинамические поверхности Е-Р-Т для образцов с x=0 и 0.33 (рис. 3а,б), а также для модельного сегнетоэлектрика ТГС [9] (рис. 3в).

Рис. 3. Термодинамические поверхности Е-Р-Т и сопоставление экспериментальных (точки) и рассчитанных (линия) ЭКЭ для NH₄HSO₄ (а,г), Rb_{0.33}(NH₄)_{0.67}HSO₄ (б,д) и ТГС (в,е) [9]

Обнаружено удовлетворительное согласие экспериментально определенных и рассчитанных при тех же напряженностях электрического поля температурных зависимостей ΔT_{AD}^{SK9} (рис. 3 г, д, е).

Путем анализа диаграмм S-T-р определены БКЭ при последовательных фазовых переходах в NH₄HSO₄ и в TГС. Для перехода $Pc \rightarrow P-1$ обнаружен аномально большой параметр $\Delta T_{AD}^{MAX} \approx 18$ К, реализующийся при низких давлениях р ≈ 300 бар. Таким образом гидросульфат аммония по БКЭ не уступает многим твердотельным хладагентам [5].

Из-за небольших энтропий переходов второго рода величины ΔT_{AD}^{6K9} для NH₄HSO₄ и TГС оказываются невелики – соответственно 0.45 К и 0.14 К при

р = 400 бар. Оценены величины давлений, приводящих к тем же значениям ΔT_{AD} , которые вызваны электрическими полями. Для NH₄HSO₄ величине ΔT_{AD} = 0.025 К соответствуют E = 1.5 кВ/см и р = 20 бар; для ТГС ΔT_{AD} = 0.120 К реализуется при E = 1.6 кВ/см и р = 320 бар. Очевидно, что барокалорическая эффективность NH₄HSO₄ при рассматриваемых сегнетоэлектрических переходах в несколько раз выше.

В разделе 3.2 выполнен анализ литературы и показано, что отсутствует полное согласие данных о свойствах и характеристиках фазового перехода в проведены подробные исследования сегнетоэлектрике PbTiO₃. Поэтому теплофизических свойств, которые позволили определить ЭКЭ и БКЭ. Установлено, энтропийный фазового что параметр перехода $\Delta S_0 = \int (\Delta C_p(T)/T) dT = 8.3 \pm 0.6 \ Дж/моль K \approx R \ln 3$ согласуется с моделью разупорядочения атомов свинца в фазе Рт-3т, упорядочивающихся в тетрагональной фазе, соответствии с что находится В результатами структурных экспериментов [10].

Аномальная теплоёмкость PbTiO₃ удовлетворительно описывается в рамках феноменологической теории, что позволило определить коэффициенты термодинамического потенциала и, используя подход, развитый в 3.1, рассчитать ЭКЭ (рис. 4а).

Рис. 4. Температурная зависимость интенсивного ЭКЭ для $PbTiO_3$ (а). Влияние электрического поля на $(\Delta T_{AD}^{3K3})_{MAX}$ (б).

Величина ΔT_{AD}^{3K3} в PbTiO₃ даже при E=1 кВ/см является значительной и превосходит соответствующие величины в известных сегнетоэлектриках [5]. Однако максимальное значение (ΔT_{AD}^{3K3})_{мАХ} нелинейно зависит от напряженности электрического поля и стремится к насыщению (рис. 4б).

В литературе отсутствовало единое мнение о барическом коэффициенте dT₀/dp. Анализ полученных в работе данных о

теплоемкости и тепловом расширении в рамках уравнения Пиппарда показал, что ожидаемая линейная зависимость между C_p и β выполняется при T<T₀ и T>T₀, и величины коэффициента $(dT_0/dp)_{p=0}$ для обеих фаз оказались равны в пределах точности их определения (– 14.0 ± 1.4) К/кбар. Полученные в работе данные о S(T) и $(dT_0/dp)_{p=0}$ позволяют оценить интенсивный и экстенсивный БКЭ (рис. 5). В соответствии со знаком dT_0/dp БКЭ в РbTiO₃ является обратным – с ростом давления температура понижается, а энтропия растет. Величины БКЭ даже при невысоких давлениях (р = 140 бар) оказались значительными: $\Delta T_{AD}^{5K9} = -1$ К и $\Delta S^{5K9} = 1.5$ Дж/кг·К.

Рис. 5. Температурные зависимости интенсивного (a) и экстенсивного (б) БКЭ в $PbTiO_3$ при p = 100 (1); 200 (2); 300 (3); 400 (4) бар.

Достоверность полученных нами результатов подтверждена данными первопринципных расчетов ЭКЭ и БКЭ для PbTiO₃ [8].

<u>В четвертой главе</u> представлены оригинальные результаты исследования теплофизических свойств и КЭ магнитной и упругой природы в кристалле La_{0.7}Pb_{0.3}MnO₃ (LPM).

На зависимости теплоемкости $C_p(T)$ обнаружена аномалия при $T_0 = 338.8 \pm 0.5$ К, связанная с переходом между пара- и ферромагнитной фазами, найденным ранее в [11]. В соответствии с рентгеновскими данными выше и ниже T_0 симметрия кристаллической решетки LPM ромбоэдрическая (пр. гр. *R-3c*).

Решеточная теплоемкость C_L рассчитывалась с использованием функций Дебая и Эйнштейна. Среднее отклонение экспериментальных данных от сглаженной кривой не превышает 0.5%. Аномальная теплоемкости ΔC_p найдена в широком диапазоне температур (367 - 180 K) (рис. 6а).

Рис. 6. Полная и решеточная (штриховая линия) теплоемкости (а) и энтропия LPM в области фазового перехода (б)

B соответствии $\Delta S(T) = -A_T$ С $M^{2}(T)$ избыточная энтропия И избыточная теплоемкость ΔC_n существуют в области температур между Т₀ и температурой насыщения квадрата намагниченности M². Это приближение справедливо для LPM, так как обе величины M^2 и ΔC_p , изменяются В ОДНОМ диапазоне температур ~ (Т₀-160 К). Избыточная энтропия, связанная с ферромагнитным фазовым переходом оценена как $\Delta S_0 = \int (\Delta C_p(T)/T) dT = 3.9$

 $\pm\,0.3$ Дж/моль•К и ее зависимость от температуры приведена на рис. 6б.

При исследовании теплового расширения обнаружена аномалия $\Delta\beta$ в широком интервале температур ниже T_0 и резкое её уменьшение выше перехода, что характерно для фазового перехода второго рода, как это наблюдалось при исследовании $C_p(T)$. Сопоставление $C_p(T)$ и $\beta(T)$ в рамках уравнения Пиппарда $C_p = (dp/dT) \cdot V \cdot T \cdot \beta + const$ позволило определить

барический коэффициент $dT_0/dp = 0.75$ К/кбар. Используя изменения $\Delta C_p(T)$ и $\Delta \beta(T)$ при T_0 , этот параметр был определен по уравнению Эренфеста $dT_0/dp = T_0(\Delta \beta / \Delta C_p) = 1.6$ К/кбар.

Рис. 7. Температурные зависимости ДТА - сигнала при давлениях: *1* - 0 кбар; *2* - 1 кбар; *3* - 2 кбар; *4* - 3 кбар (а). Фазовая Т-р диаграмма LPM (б).

Экспериментальные исследования влияния гидростатического давления на температуру перехода в LPM выполнены методом ДТА в интервале 0 - 3.5 кбар в режимах подъема и снижения давления. Температура перехода заметно смещается под давлением в область высоких температур (рис. 7а). Граница между пара- и ферромагнитной фазами может быть описана линейной зависимостью с барическим коэффициентом $dT_0/dp = 1.75 \pm 0.50$ К/кбар (рис. 7б), удовлетворительно согласующимся С величиной, определенной ИЗ уравнения Эренфеста. Различие между этими величинами и dT₀/dp из уравнения Пиппарда может быть отнесено к разной степени размытия аномалий $\Delta C_{p}(T)$ и $\Delta \beta(T)$ вблизи T_{0} .

Измерения интенсивного МКЭ на монокристаллическом образце LPM проводились при дрейфе температуры в пределах $|dT/dt| \le 3 \times 10^{-3}$ К/мин, что способствовало высокой точности определения $\Delta T_{\rm ЭКС} \pm 5\%$.

Информация о фактическом интенсивном эффекте $\Delta T_{AD}^{MK\Im}$ (рис. 8) получена с использованием калориметрических данных. При измерениях теплоемкости вблизи T_0 в поле H = 5 кЭ заметных изменений ΔC_p не обнаружено. Поэтому зависимостью $C_{OEP}(H)$ можно пренебречь. Максимальное значение $\Delta T_{AD}^{MK\Im}$ было найдено вблизи $T_{MAX} \approx 342$ К. Эта

Максимальное значение ΔT_{AD}^{MK9} было найдено вблизи $T_{MAX} \approx 342$ К. Эта температура оказалась выше T_0 , определенной из $C_p(T)$. Различие температур объясняется разницей температур экстремумов функций $\Delta C_p(T) = T(\partial \Delta S/\partial T) = T \cdot A_T \cdot (\partial M^2 / \partial T)$ и $\Delta T_{AD}^{MK9} = (T/Cp)(\partial M / \partial T)_H$. В интервале исследованных полей изотермические зависимости $(\Delta T_{AD}^{MK9})_{MAX}(H)$ близки к линейным (рис. 8б). Таким образом, можно ожидать значительно бо́льших величин ΔT_{AD}^{MK9} в LPM при дальнейшем увеличении напряженности поля. МКЭ в LPM сопоставим с эффектом, наблюдаемым в La_{0.7}Ca_{0.3}MnO₃, который является перспективным твердотельным хладагентом.

В соответствии со знаком производной $(\partial V/\partial T)_p > 0$ БКЭ в LPM является обычным: $\Delta S_{5K\Im} < 0$, $\Delta T_{AD}^{5K\Im} > 0$. Используя данные $C_p(T)$ и $T_0(p)$, был оценен БКЭ на основе подхода, развитого в [4, 7]. Из данных на рис. 7а следует, что энтропия фазового перехода остается постоянной при давлениях до 3.5 кбар.

Рис. 8. Температурная зависимость интенсивного МКЭ в LPM для различных H=const (a). Изотермические зависимости ΔT_{AD}^{MK9} (H) (б).

Из температурных зависимостей ΔT_{AD}^{5K9} для LPM (рис. 9а) видно, что в отличие от МКЭ температура максимальных значений БКЭ очень близка к T_0 , определенной из $C_p(T)$. Причина заключается в том, что экстремумы функций $C_{p,H}(T)$ и $(\partial V/\partial T)_{p,H}$ имеют место при одной и той же температуре.

Рис. 9. Температурная зависимость интенсивного БКЭ в LPM при постоянных давлениях (а). Изотермические зависимости $\Delta T_{AD}^{\ \ \ \ }$ (р) (б).

Зависимости $\Delta T_{AD}^{5K\Im}$ от давления при T = const являются практически линейными (рис. 9б). Таким образом, как и в случае $\Delta T_{AD}^{MK\Im}$ (H), интенсивный БКЭ не обнаруживает насыщения с возрастанием внешнего давления, по крайней мере в исследованном интервале давлений.

0.25±0.03 К/кбар оказывается более существенным по сравнению с МКЭ $(\Delta T_{AD}^{MK\Im})_{MAX}/\Delta H = (8.3\pm0.4)\cdot10^{-2}$ К/кЭ. Сочетание разных эффектов полезно при рационального цикла смешанного охлаждения за построении счет использования двух видов внешних полей. Недавно подобное соотношение между параметрами МКЭ и БКЭ наблюдалось для сплава Ni-Mn-In [7]. Это явление может быть связано с сильным различием восприимчивости температуры фазового перехода к магнитному полю и гидростатическому давлению: для LPM ($dT_0/dH = 0.1$ К/кЭ, $dT_0/dp = 1.7$ К/кбар) и для Ni-Mn-In $(dT_0/dH = -0.14 \text{ K/k})$, $dT_0/dp = 1.8 \text{ K/k}$ бар). Подобная ситуация относительно соотношения между БКЭ и ЭКЭ была найдена нами для NH₄HSO₄ при фазовом переходе второго рода: $dT_1/dE = -0.5 \text{ K} \cdot (\kappa \text{B/cm})^{-1}$, $dT_1/dp = 14 \text{ K/кбар}$.

<u>Пятая глава</u> посвящена изучению влияния состава мультиферроидных композитов сегнетоэлектрик - ферромагнетик (x)La_{0.7}Pb_{0.3}MnO₃ - (1–x)PbTiO₃ (x = 0.15; 0.85) на теплофизические свойства и калорические эффекты, исследованные в предыдущих главах в исходных соединениях LPM и PT

(PbTiO₃). Наибольший интерес связан с получением оригинальной информации о мультикалорических свойствах в случае упругого взаимодействия разных по природе компонентов композиционного материала.

Рентгеновские исследования показали, что образцы состояли из ромбоэдрической LPM и тетрагональной перовскитной PT фаз, то есть химическое взаимодействие компонентов отсутствовало, и мы имели дело с реальными композитными материалами.

Результаты калориметрических исследований композитов в интервале температур, включающем магнитный при T^{FM} и сегнетоэлектрический при T^{FE} переходы, представлены на рис. 10а.

Рис. 10. Температурные зависимости теплоемкости композитов с x = 0.18 (1) и x = 0.85 (2). Кривая (2) сдвинута на 20 Дж/моль-К вниз. Штриховые линии- решеточная теплоемкость (а). Энтропия фазовых переходов - x = 0.18 (1) и x = 0.85 (2) (б). Поведение аномальной теплоемкости в рамках теории Л.Д. Ландау x = 0.18 (в) и x = 0.85 (г).

Две особенности теплоемкости, связанные с переходами в LPM при T^{FM} и в PT при T^{FE} , зарегистрированы в обоих композитах. Температуры переходов сегнетоэлектрической и ферромагнитной природы незначительно варьируются с ростом концентрации допирующего компонента. Аномалии при T^{FM} размыты по сравнению с C_p аномалией, наблюдавшейся в монокристалле LPM. Для надежного определения характеристик перехода при T^{FM} была изучена теплоемкость керамики LPM. И в этом случае также наблюдалось размытие $C_p(T)$. Поведение $C_p(T)$ вблизи T^{FE} не подвержено заметному влиянию возрастания х. Это связано с довольно низкой температурой (800°C) обжига образцов для сохранения стехиометрии исходных компонентов.

В широкой области температур, исключая фазовые переходы, было установлено удовлетворительное согласие экспериментальной теплоемкости композитов $C_p^{exp}(T)$ и рассчитанной $C_p^{calc}(T) = xC_p^{LPM}(T) + (1-x)C_p^{PT}(T)$ с использованием $C_p(T)$ LPM и PT. Поведение $C_p^{calc}(T)$ соответствует решеточному вкладу C_L . Температурные зависимости энтропий переходов показаны на рис. 10б, а их величины составили (Дж/моль·К): для $x = 0.18 - \Delta S^{FM} = 1.0 \pm 0.2$ и $\Delta S^{FE} = 5.8 \pm 0.4$; для $x = 0.85 - \Delta S^{FM} = 4.4 \pm 0.5$ и $\Delta S^{FE} = 1.9 \pm 0.3$.

Уменьшение ΔS^{FE} с ростом концентрации LPM связано с отнесением этой величины к молярной массе композита. Энтропии, пересчитанные на молярную массу компонента PT, близки к энтропии чистого титаната свинца ($\Delta S^{FE} = 8.3 \pm 0.5 \text{ Дж/моль} \cdot \text{K}$). ΔS^{FM} в композите с x = 0.85 превышает значение для монокристалла LPM ($\Delta S^{FM} = 3.9 \pm 0.4 \text{ Дж/моль} \cdot \text{K}$). Одна из причин может быть связана с трудностями надежного определения избыточной энтропии для сильно размытых фазовых переходов второго рода.

Как и в случае $C_p(T)$, аномалии $\beta(T)$ сильно изменялись при изменении х (рис 11а,б). Для x = 0.18 аномалия при T^{FM} была полностью подавлена. Пик β около 260 К соответствует аномальному поведению, найденному в чистом РТ.

Восприимчивость композитов к давлению определена из зависимости $C_p(\beta)$ в рамках уравнения Пиппарда, которое справедливо вблизи T^{FM} и T^{FE} (рис. 11в,г,д). Барические коэффициенты оказались равны (К/кбар): для x = 0.18 - $dT^{FE}/dp = -4.3 \pm 0.5$; для x = 0.85 - $dT^{FE}/dp = -0.5 \pm 0.2$ и $dT^{FM}/dp = 1.3 \pm 0.4$. Последняя величина удовлетворительно согласуется с рассчитанной из уравнения Эренфеста $dT^{FM}/dp = T^{FM}(\Delta\beta/\Delta Cp) = 1.2$ К/кбар.

Рис. 11. Температурная зависимость β (a - x = 0.85, б - x = 0.18). Соотношение между $C_p(T)$ и $\beta(T)$ для x = 0.85 (в) T < T^{FM}, (г) T < T^{FE} и для x = 0.18 (д) T < T^{FE}.

В соответствии с величинами dT^{FM}/dp и dT^{FE}/dp увеличение концентрации одного из компонентов приводит к понижению восприимчивости композитов к внешнему давлению при T^{FE} и T^{FM} по сравнению с чистыми РТ и LPM.

Результаты исследования интенсивного МКЭ в композитах представлены на рис. 12а,б и сопоставлены с данными для монокристалла и керамики LPM.

Рис. 12. Экспериментальные (а) и пересчитанные (б) на чистый LPM максимальные величины ΔT_{AD}^{MK3} в зависимости от поля. 1 - монокристалл LPM, 2 - керамика LPM, 3 - x = 0.85, 4 - x = 0.18.

Монокристалл LPM имеет наибольшую величину ($\Delta T_{AD}^{MK\Im}$)_{МАХ}. Однако изменение энергии композита, связанное с МКЭ при адиабатическом изменении H, затрачивается на повышение (понижение) температуры обоих компонентов. Из уравнения $\Delta T_{AD}^{LPM} = \Delta T_{AD}^{KOM\PiO3UTA}[1+(C^{PT}/C^{KOM\PiO3UTA})]$ получена информация о действительном изменении температуры компонента LPM. Пересчитанные величины интенсивного МКЭ для обоих композитов оказываются более высокими (рис. 12б). При этом поведение ($\Delta T_{AD}^{MK\Im}$)_{МАХ}(H) для х=0.85 совпадает с зависимостью для монокристалла LPM.

Рис. 13. Влияние поля E на $(\Delta T_{AD}^{\rightarrow K \ni})_{MAX}$ (1 - PT; 2 - x=0.18; 3 - x=0.85).

Анализ аномальной теплоемкости в рамках термодинамической теории (рис. 10 в, г) показал отсутствие влияния состава композитов на сегнетоэлектрического степень близости перехода к трикритической точке. Используя данные о коэффициентах термодинамического электрическое потенциала И уравнение состояния, был рассчитан интенсивный ЭКЭ (рис. 13). В отличие от МКЭ этот параметр нелинейно При зависит ОТ поля. низких напряженностях электрического поля параметр $\Delta T_{AD}^{1 \ 3K3}$ композитов больше, чем в чистом РТ и

быстрее насыщается с ростом поля.

Выполнен анализ БКЭ в композитах в области фазовых переходов разной физической природы. Как и ранее, величины ΔT_{AD}^{EK9} и ΔS_{EK9} были определены путем рассмотрения функции полной энтропии материалов от давления и температуры S(T,p). В соответствии со знаками dT^{FM}/dp и dT^{FE}/dp БКЭ ферромагнитного и сегнетоэлектрического переходов имеют противоположные знаки (рис. 14). Приложение давления ведет к нагреванию и охлаждению соответственно ферромагнитного и сегнетоэлектрического компонентов.

Рис. 14. БКЭ в области магнитного перехода для x = 0.85 при p = 1 (1); 2 (2), 3 (3); 4 (4) кбар (а). Поведение БКЭ в области сегнетоэлектрического фазового перехода для x = 0.18 при p = 0.1 (1); 0.2 (2), 0.3 (3); 0.4 (4) кбар (б).

(рис. 14б), в соответствии со значительной величиной dT^{FE}/dp . В последнем случае температура минимума функции ($|\Delta T_{AD}^{5K\Im}|$)_{MAX}(T) нелинейно смещается в область низких температур с начальной скоростью ~ 0.9 К/кбар.

В соответствии с сегнетоэлектрической - ферромагнитной природой композиты можно рассматривать в качестве мультиферроидных материалов. Выполнен сравнительный анализ полей различной физической природы, необходимых для реализации $\Delta T_{AD} = 1$ К в композитах, LPM и PT. Установлено, что экстенсивные параметры в малой степени подвержены влиянию соотношения компонентов и изменяются в узком интервале $\Delta S^{K9} = |1.3 - 1.7|$ Дж/моль К.

<u>В шестой главе</u> проведен анализ калорической эффективности исследованных ферроиков. В качестве критерия оценки выбран интегральный параметр Relative Cooling Power (RCP) *(относительная мощность охлаждения)* [1], величина которого определяется из данных о ΔT_{AD} и $\Delta S_{KЭ}$ как произведение максимальных величин пиков на разность температур на полувысоте (FWHM) : $RCP(T) = \Delta T_{AD}^{MAX} \cdot \partial T_{FWHM}$; $RCP(S) = -\Delta S^{MAX} \cdot \partial T_{FWHM}$.

Величина RCP(T)^{МКЭ} для композита x = 0.85 и для керамики LPM превосходят параметры для монокристалла LPM на ~ 18% при H = 4 кЭ (рис. 15а). Пересчет RCP композитов на компонент чистого LPM показал, что величина RCP(T)^{МКЭ} превышает аналогичные для монокристалла и керамики LPM (рис. 15б). Для композита x = 0.85 отличие составляет ~ 30% при H = 4 кЭ.

Причину увеличения абсолютных МКЭ и RCP^{MKЭ} в магнитном компоненте композита можно объяснить с учетом БКЭ. Включение магнитного поля приводит к появлению $\Delta T_{AD}^{MKЭ}$ и одновременно способствует усилению

Рис. 15. RCP(T)^{МКЭ} (а) и пересчитанная величина (б) на чистый LPM.

1 - монокристалл LPM,

2 - керамика LPM, 3 - x = 0.85, 4 - x = 0.18

упругого взаимодействия между магнитострикционной (LPM) И пьезоэлектрической (РТ) фазами, что вызывает возникновение механических напряжений, то есть можно говорить о появлении внутреннего давления В композите. Из-за большой величины БКЭ в LPM при включении H возникает дополнительный вклад В изменение RCP температуры И магнитного компонента и композита в целом. То есть, величины ΔT_{AD} , ΔS_{K3} , RCP(T) и RCP(S) в T^{FM} при можно композитах рассматривать как суммы двух эффектов -МКЭ и БКЭ, например, $\Delta T_{AD} = \Delta T_{AD}^{MK3} +$ давления, приводящие к увеличению КЭ в композите x = 0.85. При H = 3.3 кЭ и соответствующие 5.3 кЭ давления составляли 120 бар и 210 бар.

 $RCP(T)^{5K9}$ при магнитном переходе оказывается наибольшим в композите x = 0.85 по сравнению с керамикой и монокристаллом LPM, и разница величин существенно увеличивается при высоких давлениях.

Интегральные электро- и барокалорические параметры при сегнетоэлектрическом фазовом переходе убывают монотонно с ростом концентрации магнитного компонента в композите. В большей степени это относится к RCP(T)^{БКЭ}.

Совокупность полученных в работе данных позволяет проанализировать RCP исследованных материалов и их конкурентоспособность в качестве твердотельных хладагентов по сравнению с известными моноферроиками (Таблица 1).

		ЭКЭ	МКЭ	БКЭ	ЭКЭ	МКЭ	БКЭ
Материал	$T_{\Phi\Pi}$	RCP(T),	RCP(T),	RCP(T),	RCP(S),	RCP(S),	RCP(S),
		K^2	K^2	K^2	Дж/кг	Дж/кг	Дж/кг
NH ₄ HSO ₄ (1 кбар)	160			1400			8000
РbTiO ₃ (1.5 кВ/см, 1 кбар)	763	0.7		-130	1,7		-120
La _{0,7} Pb _{0,3} MnO ₃ (5 кЭ, 1 кбар) монокристалл	339		8.5	15		12	20
x=0,85	321		9.5	22		13	20
(1.5 кВ/см, 5 кЭ, 1 кбар)	760	1.3		-1	1		-0.4
Gd [1] (60 кЭ)	294		850			850	
MnAs [1] (50 кЭ)	318		315			550	
РZT (300 нм) [12] (480 кВ/см)	500	1600			770		
Ni-Mn-Sn (Cu) [7] (50 кЭ, 50 бар)	320					35	5

Таблица 1. Интегральные калорические параметры некоторых ферроиков

По сравнению с рядом сегнетоэлектрических и магнитных материалов с очень большими величинами RCP (PZT, MnAs), безусловно, перспективным оказывается NH₄HSO₄, по крайней мере, в соответствии с параметрами БКЭ для перехода при 160 К.

Манганиты и композиты на их основе также следует рассматривать, как материалы, перспективные для использования в качестве твердотельных хладагентов. Конечно, по калорическим параметрам эти материалы уступают популярным ферроикам, но нужно учитывать, что нами выполнены исследования в полях малой напряженности. С другой стороны, следует иметь в виду, что RCP параметры нелинейно увеличиваются с ростом поля.

Результаты анализа позволяют считать, что последовательное использование магнитного и электрического полей, а также давления,

позволяет реализовать комплексный холодильный цикл на основе композитов, испытывающих ферроидные фазовые переходы.

Основные результаты и выводы работы

В диссертации приведены результаты теплофизических исследований фазовых переходов и калорических эффектов разной физической природы в кристаллических сегнетоэлектриках и ферромагнетиках, а также объемных композитах на их основе. Впервые параллельно исследованы ЭКЭ, МКЭ и БКЭ в ферроидных и мультиферроидных материалах.

Выполнены исследования теплоемкости, диэлектрической 1. проницаемости, теплового расширения гидросульфатов Rb_X(NH₄)_{1-X}HSO₄ и PbTiO₃, претерпевающих сегнетоэлектрические фазовые переходы. Определены области стабильности сегнето- и антисегнетоэлектрической фаз в твердых растворах. Показано, что термодинамическая теория применима к переходов в гидросульфатах описанию фазовых И титанате свинца. Установлено согласие рассчитанных и экспериментально измеренных величин интенсивного ЭКЭ, что свидетельствует о возможности его определения из калориметрических данных и электрического уравнения состояния. Кристаллы с фазовым переходом типа порядок - беспорядок (семейство гидросульфатов аммония) уступают по величине ЭКЭ PbTiO₃. Обнаружена аномально высокая эффективность барокалорическая NH₄HSO₄ при сегнетоантисегнетоэлектрическом фазовом переходе, которая обусловлена большой энтропией и аномальным барическим коэффициентом.

2. Исследованы теплоемкость, тепловое расширение, восприимчивость к давлению и выполнены прямые измерения МКЭ в ферромагнетике $La_{0,7}Pb_{0,3}MnO_3$. Несмотря на отсутствие изменения симметрии кристалла при фазовом переходе, аномалия коэффициента объемного теплового расширения составляет около 40 % от параметра решетки. Энтропия фазового перехода практически не меняется в интервале давлений до 3.5 кбар и в магнитном поле до 5 кЭ. Установлено, что БКЭ, приведенный к единице давления, превышает приведенный МКЭ.

3. Впервые выполнены исследования теплофизических свойств и калорических эффектов разной физической природы в одном материале, приготовленном в виде объемного композита сегнетоэлектрик - ферромагнетик. Установлены закономерности изменения ЭКЭ, МКЭ и БКЭ в зависимости от концентрации компонентов. Рост калорической эффективности композитов может быть обусловлен вкладом БКЭ за счет давления, возникающего на границах сегнетоэлектрических и магнитных гранул в результате их механического взаимодействия.

4. Исследованные в работе NH₄HSO₄, манганит и композиты по интегральным параметрам ЭКЭ, МКЭ и БКЭ (RCP - *относительная мощность охлаждения*) не уступают материалам, испытывающим сегнетоэлектрические и ферромагнитные фазовые переходы и рассматриваемым в качестве перспективных твердотельных хладагентов.

<u>Литература</u>

- 1. Tishin A.M., Spichkin Y.I. The Magnetocaloric Effect and its Applications. Bristol and Philadelphia: Institute of Physics Publishing. – 2003. – 475 p.
- 2. Valant M. Electrocaloric materials for future solid-state refrigeration technologies // Progress in Materials Science. 2012. V. 57. P. 980–1009.
- Scott J.F. Electrocaloric Materials // Annual Rev. Mater. Res. 2011. V. 41. – P. 229-240.
- 4. Флёров И.Н., Горев М.В., Трессо А., Лапташ Н.М. Перовскитоподобные фториды и оксифториды фазовые переходы и калорические эффекты // Кристаллография. 2011. Т. 56. Вып. 1. С. 13-21.
- Флёров И.Н. Калорические эффекты в твердых телах и перспективы их практического использования // Известия СПбГУНиПТб – 2008. – № 1. – С. 41 – 63.
- 6. Звездин А.К., Пятаков А.П. Фазовые переходы и гигатский магнетоэлектрический эффект в мультиферроиках // УФН 2004. Т. 174, № 4. С. 465-470.
- Castillo-Villa P.O., Manosa L., Planes A., Soto-Parra D.E., Sanchez-Llamazares J.L., Flores-Zuniga H., Frontera C. Elastocaloric and magnetocaloric effects in Ni-Mn-Sn(Cu) shape-memory alloy // J. Appl. Phys. - 2013. – V. 113. – P. 053506 (1-6).
- Lisenkov S., Mani B.K., Chang C.-M., Almand J., Ponomareva I. Multicaloric effect in ferroelectric PbTiO₃ from first principles // Phys. Rev. 2013. B87. P. 224101 (4).
- 9. Струков Б.А. Электрокалорический эффект в монокристаллическом триглицинсульфате // Кристаллография. 1966. Т. 11, № 6. С. 892-895.
- Nelmes R.J., Piltz R.O., Kuhs W.F., Tun Z., Restori R. Order-disorder behaviour in the transition of PbTiO₃ // Ferroelectrics – 1990. – V. 108. – P. 165-170.
- Volkov N., Petrakovskii G., Böni P., Clementyev E., Patrin K., Sablina K., Velikanov D., Vasiliev A. Intrinsic magnetic inhomogeneity of Eu substituted La_{0.7}Pb_{0.3}MnO₃ single crystals // J. Magn. Magn. Mater. – 2007. – V. 309. – P. 1-6.
- 12. Mischenko A.S., Zhang Q., Scott J.F., Whatmore R.W., Mathur N.D. Giant electrocaloric effect in thin film PbZr_{0.95}Ti_{0.05}O₃ // Science 2006. V. 311. P. 1270-1271.

Основные публикации по теме диссертации

- 1. Флёров И.Н., Михалева Е.А. Электрокалорический эффект и аномальная проводимость сегнетоэлектрика NH₄HSO₄ // ФТТ.– 2008.– Т. 50.– Вып. 3.– С. 461-466.
- Михалёва Е.А., Флёров И.Н., Бондарев В.С., Горев М.В., Васильев А.Д., Давыдова Т.Н. Фазовые переходы и калорические эффекты в сегнетоэлектрических твёрдых растворах гидросульфатов аммония и рубидия // ФТТ. –2011.– Т. 53.–Вып. 3.– С. 478-484.
- Михалева Е.А., Флёров И.Н., Горев М.В., Молокеев М.С., Черепахин А.В., Карташев А.В., Михашенок Н.В., Саблина К.А. Калорические характеристики PbTiO₃ в области сегнетоэлектрического фазового перехода // ФТТ. – 2012. – Т. 54. – Вып. 9. – С. 1719-1726.
- Mikhaleva E.A., Flerov I.N., Bondarev V.S., Gorev M.V., Vasiliev A.D., Davydova T.N. Electrocaloric and Barocaloric Effects in Some Ferroelectric Hydrosulfates and Triglycinesulfate // Ferroelectrics. – 2012. – V. 430. – pp. 78 – 83.
- Kartashev A.V., Mikhaleva E.A., Gorev M.V., Bogdanov E.V., Cherepakhin A.V., Sablina K.A., Mikhashenok N.V., Flerov I.N., Volkov N.V. Thermal properties, magneto- and barocaloric effects in La_{0.7}Pb_{0.3}MnO₃ single crystal // J. Appl. Phys. 2013. V. 113. pp. 073901 (6).
- Михалёва Е.А., Михашенок Н.В., Молокеев М.С., Флёров И.Н., Горев М.В. Теплоемкость, тепловое расширение и калорические эффекты в композите сегнетоэлектрик-ферромагнетик 0.82(PbTiO₃) – 0.18(La_{0.7}Pb_{0.3}MnO₃) // Вестник СибГАУ. – 2013. – № 1. – Вып. 74. – С. 159-162.

Подписано в печать 17.10.2013 Формат 60×84×16. Усл. печ. л. 1. тираж 70 экз. Заказ № 42 Отпечатано в типографии ИФ СО РАН 660036, Красноярск, Академгородок, 50, стр. 38