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We study second-harmonic generation (SHG) of femtosec-
ond laser pulses in a rectangular two-dimensional nonlinear
photonic crystal (NLPC). Multiple SH beams were ob-
served in the vicinity of the propagation direction of the
fundamental beam. It has been verified that the angular
positions of these beams obey the conditions of nonlinear
Raman–Nath diffraction (NRND). The measured SH spec-
tra of specific NRND orders consist of narrow peaks that
experience a high-frequency spectral shift as the order
grows. We derive an analytical expression for the process
studied and find the theoretical results to be in good agree-
ment with the experimental data. We estimate the enhance-
ment factor of nonlinear Raman–Nath diffraction in 2D
NLPC to be 70. © 2015 Optical Society of America
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Nonlinear frequency conversion in two-dimensional (2D) non-
linear photonic crystals (NLPCs) has been the subject of
numerous studies [1–16] since the concept of NLPC was
proposed [1]. These crystals enable a variety of noncollinear
nonlinear processes that manifest themselves as sum and differ-
ence frequency generation and parametric down conversion.
An important advantage of NLPCs originates from spatial
modulation of the sign of nonlinear susceptibility providing
reciprocal “nonlinear” lattice vectors such that the phase-
matching conditions become feasible in three wave-mixing
processes. For instance, periodic 2D NLPC are found to be
promising media for cascaded frequency conversion via
Čerenkov nonlinear diffraction [6], study of the nonlinear
Talbot effect [7], and generation of entangled-path biphotons
[8]. More complicated spatial realizations of 2D NLPC enable
all-optical deflection [9], generation of nondiffracting Airy

beams [10], and twisted photons [11] (see also review [12]).
While most of the previous studies on nonlinear frequency con-
version in periodic 2D NLPC have essentially focused on spa-
tial characteristics of the generated radiation, the spectral
characteristics of this process remain insufficiently studied. It
has recently been shown that properly designed 1D NLPC
can be used for spectral shaping [13]. This approach can be
extended to the case of 2D NLPC to obtain the desired spatial
as well as spectral characteristics of the generated radiation.
Although some approaches have been developed to calculate
SHG in 2DNLPCs, such as the method based on Green’s func-
tion formalism [14], the transfer-matrix method [15] and the
effective nonlinear coefficient model [16,17], it is desirable to
have a simple approach adopted to periodic rectangle 2D
NLPCs. Developing this approach is essential for designing
2D NLPCs with required nonlinear optical characteristics.

In this Letter, we report our studies on the second-harmonic
generation (SHG) of femtosecond laser pulses in rectangle
2D NLPCs. This process is found to be in close analogy with
nonlinear Raman–Nath diffraction, which takes place in 1D
nonlinear photonic lattices [18–23]. We derive analytical ex-
pression describing SHG under nonlinear Raman–Nath dif-
fraction in rectangle 2D NLPCs. The main advantage of
2D NLPC is the ability of these crystals to enhance the effi-
ciency of SHG due to quasi-phase matching, which provides
a tool for spectral shaping of generated radiations.

The sample studied is a congruent lithium niobate crystal
having the dimensions 5.0 × 5.0 × 0.5 mm3. The structure
of the sample is a two-dimensional rectangular nonlinear pho-
tonic lattice with a rectangular motif, where the rectangle-
shaped prisms are embedded into a bulk medium with the
inverse sign of quadratic nonlinear susceptibility. These
prisms stand at the regular lattice points with periodicity
10 × 115 μm2, as sketched in Fig. 1(a). The NLPC structure
was fabricated by the electric-field poling procedure [24]
(Labfer Ltd). Figure 1(b) shows a polar facet of the sample
after the chemical etching procedure. In the experiments,
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the fundamental frequency (FF) beam from a Ti:sapphire os-
cillator (Tsunami, Spectra-Physics), delivering 100-fs pulses at
a repetition rate of 80 MHz (central wavelength 800 nm), was
focused with a 20-cm lens into the sample to produce a beam
w0 � 80 micron in focal diameter. The fundamental radiation
propagated along the y-axis and its polarization coincided with
the z-axis to employ the highest nonlinear coefficient of lithium
niobate d 33. Figure 1(c) shows the SH pattern observed on a
cylindrical screen 3 cm from the center of the sample. Next to
the side spots corresponding to Čerenkov nonlinear diffraction
[25], one can distinguish a set of ordered SH spots in the vicin-
ity of the passed FF beam. It is believed that the SH beams
correspond to the nonlinear Raman–Nath diffraction due to
the periodicity of the structure in the transverse direction. A
phase-matching diagram is presented in Fig. 1(d). Here k1
and k2 are the wavevectors of FF and SH, respectively, Δk �
k2 − 2k1 is the wave vector mismatch, G is the primary recip-
rocal lattice vector, and m is the NRND order. We clearly ob-
serve eleven SH beams corresponding to the six orders. The
angular positions of SH beams βm have been proved to obey
the NRND condition valid for periodic 1D structures

sin�βm� � mjGj∕jk2j: (1)

The calculated and measured NRND angles are summa-
rized in Table 1. From the above, we conclude that the
NRND also contributes to the SHG in 2D NLPCs. The mea-
sured Čerenkov nonlinear diffraction angle is 56.4 deg, which
agrees with the calculated value 56.7 deg.

For theoretical analysis of SHG in a 2D structure, we start
with the model known for the nonlinear diffraction in a 1D
structure [26]. In the low conversion limit, where depletion
of the pump can be neglected, the SH Fourier spectrum in
a 1D structure of the length L is given by the form

A�Ω;K X ;K Z ;L� � F �Ω;K X ;K Z ;L�R�K X �
Z

L

0

exp�iQy�dy:

(2)

We introduce the following designations

F �Ω; K X ; K Z ; L� � −i�π∕2�3∕2β2I 1�0�τa2
× exp�−iqL − ��τΩ�2 � �aK Z �2�∕8�

R�K X � �
X
m

gm exp�−a2�mG � K X �2∕8�

q � Ω∕u2 − K 2
X∕2k2;

Q � Δk � νΩ − �K 2
X � K 2

Z �∕2k2
Δk � k2 − 2k1; ν � �1∕u2 − 1∕u1�;
Ω � 2πc�1∕λ2 − 2∕λ0�: (3)

Here β2 � 64π3χ�2�∕�cλ1n1n2� is the nonlinear coupling coef-
ficient, I 1�0� is the FF intensity at the beam center, 2τ and 2a
are the pulse duration and the focal spot diameter of the FF
beam, respectively; Ω is the frequency detuning from the cen-
tral double frequency, λ0 is the central FF wavelength and λ2 is
the SH spectral component, K X ; K Z are the so-called spatial
frequencies, Δk is the wavevector mismatch between FF (k1)
and SH (k2) in the direction y, ν is the group velocity mismatch
(u1;2 is the group velocity), and gm is the Fourier coefficients
[23], where m � 0;�1;�2….

Integration of Eq. (2) gives the SH spectral amplitude
generated in a 1D structure of the length d [26]:

A�Ω; K X ; K Z ; d� � F�Ω; K X ; K Z ; d �
× R�K X �d exp�iQd∕2�sinc�Qd∕2�; (4)

where sinc�x� � sin�x�∕x.
The function R�K X � produces a series of maxima at the spa-

tial frequencies. The relation between the spatial frequency and
the internal SH propagation angle can be found geometrically
using the phase-matching diagram shown in Fig. 1(d):
K X � k2 sin�θ� − 2k1 sin�γ�, where γ and θ are the inner
FF and SH propagation angles. We consider extraordinary
waves and use the Sellmeier coefficients from Ref. [27] to
approximate refractive indexes of lithium niobate. For the
oblique incidence of the FF wave, we can represent the full
wavevector mismatch in Eq. (3) as Q � k2 cos�θ� − 2k1
cos�γ� � νΩ [20].

For a homogeneous nonlinear layer (g�x� � g �0� � const)
of the length h we have

A�Ω; K X ; K Z ; h� � F�Ω; K X ; K Z ; h�
× R�h��K X �h exp�iQh∕2�sinc�Qh∕2�;

R�h��K X � � g�0� exp�−�aK X �2∕8�: (5)
Let us now treat 2D NLPC as a stack of 1D periodic struc-

tures (along the x-axis) spaced by 12 μm in the direction along

Fig. 1. Design of a 2D nonlinear photonic structure (a), a pattern
etched on the polar facet of the crystal (b), and the pattern observed on
the screen (c). Peripheral spots correspond to Čerenkov nonlinear dif-
fraction (marked as Ce), and the central spots are nonlinear Raman–
Nath diffraction (marked as RN). (d) Phase-matching diagram.

Table 1. Predicted and Measured NRND Order
Parameters

Measurement [deg]

NRND
order

Prediction
[deg] Positive Negative

0 0 0� 3 · 10−3
1 2.292 2.298� 3 · 10−3 2.298� 3 · 10−3
2 4.589 4.601� 3 · 10−3 4.608� 3 · 10−3
3 6.892 6.877� 3 · 10−3 6.856� 3 · 10−3
4 9.207 9.258� 3 · 10−3 9.251� 3 · 10−3
5 11.537 11.554� 3 · 10−3 11.547� 3 · 10−3
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the y-axis. The elementary period of NLPC along the y-axis is
Λ � 115 μm; it includes two layers, one being a 1D structure
(an inhomogeneous layer of the length d ) formed along the x-
axis and the other one being a monodomain (homogeneous)
layer of the length h (Λ � d � h). In this case, the total SH
spectral amplitude generated in a layered structure is a super-
position of the fields generated by each layer, taking into ac-
count the phase accumulated along the propagation direction.

It is possible to summarize separately the contributions from
inhomogeneous and homogeneous layers to the SH amplitude.
As a result, the SH amplitude after N layers is expressed as
follows:

A�Ω; K X ; K Z ; L� � F �Ω; K X ; K Z ; L� × exp�iQ�L − h�∕2�
× P�Q�fdR�K X �sinc�Qd∕2�
� hR�h��K X � exp�iQΛ∕2�sinc�Qh∕2�g;

(7)

where

P�Q� � sin�QL∕2�∕ sin�QΛ∕2�: (8)
Factor (8) is similar to the one observed at diffraction of the

plane wave on a rectangular amplitude lattice. By means of
Eq. (7), we can find the frequency-angle SH spectral intensity
S�Ω; K X ; K Z ; L� � jA�Ω; K X ; K Z ; L�j2. Factor (8) and the
function R�K X � in Eq. (3) determine the main features of
nonlinear diffraction of ultrashort laser pulses in 2D structures.
The spectral maxima on the angular distribution take place
when QΛ � 2πp (p � 0;�1;�2;…) and K X � −mG. If
K Z � 0, then the SH frequency maximum is shifted by
Ωsh � �Δk − K 2

X ∕2k2�∕ν. According to Eq. (8), the frequency
interval between the spectral maxima equals ΔΩ � 2π∕�jνjΛ�
or Δλ2 � λ22∕�cjνjΛ�. The SH frequency spectrum has the
width δλ2 ≈ λ22∕�cjνjL� for all quasi-phase-matching orders.
Under our experimental conditions, we have δλ2 ≈ 0.06 nm
and Δλ2 � 2.45 nm (ν � 1.89 · 10−9 s ·m−1). If h ≪ d , it
is clear from Eq. (7) that functions R�K X � and P�Q� are
responsible for angular and frequency-angle characteristics of
SH, respectively. Hence varying parameters of the structure,
we can independently manage spatial and spectral characteris-
tics of SH waves.

To measure angular characteristics of SH, a 120-μm-width
slit was mounted on a motorized translation stage 50 mm away
from the sample. Using a 918D power meter (Newport), we
measured the averaged SH power passed through the slit as
a function of the slit coordinate in the direction normal to
the FF beam. The angular distribution of the SH power is very
sensitive to the FF incidence angle onto the sample. In the ex-
periment, the fundamental radiation was directed at a small
angle to the y-axis in the XY-plane of the crystal to prevent
undesired back reflection to the oscillator. As a result, the mea-
sured angular distribution of the SH power is slightly asymmet-
ric as shown in Fig. 2. The relatively high background signal
could be a result of the SHG in homogeneous layers [the
second term in Eq. (7)], as well as minor imperfection of the
nonlinear structure and light scattering at the facets. The SHG
efficiency for the central beam determined by η � P2ω∕P2

ω was
up to 3 × 10−3% ·W−1.

The spectra of specific SH beams were measured using
a MSDD1000 spectrometer (Solar TII, Corp.). As shown in
Fig. 3, the SH spectrum for the central SH beam (m � 0)

consists of narrow peaks. The measured spectral width of
the SH maxima and the spectral interval between them are
δλ2 ≈ 0.2 nm and Δλ2 � 2.6 nm, respectively. The spectrum
calculated using Eq. (7) reproduces the measured one as illus-
trated in the same graph. These spectra differ from the ones
corresponding to SHG in a 1D structure [23]. We believe these
peaks to be attributed to the 45th- and 44th-order QPM SHG.
Actually, the full wavevector mismatch in the propagation
direction for the zero transverse order must be equal to
one of the spatial harmonics provided by the structure, i.e.,
Q�λ2; m � 0� � pjGyj � 2πp∕Λ. This requirement is ful-
filled at the following parameters: λ2 � 399.6 nm for p �
45 and λ2 � 402.2 nm for p � 44. Similar spectra were mea-
sured for the SH beams for the first five NRND orders as
shown in Fig. 4(a). The spectral peaks tend to shift toward
shorter wavelength range with increasing NRND order. This
tendency is explained by the behavior of the wavevector mis-
match in Eq. (7) Q � Δk � νΩ − �mG�2∕2k2 that goes to
zero at specific wavelengths for the given values of parameter
m. In particular, increasing the order m results in QPM SHG
at shorter wavelengths. Indeed, the calculated angular distribu-
tion of SH spectral intensity predicts this kind of angular
behavior of the spectral intensity, as seen from Fig. 4(b).
For the calculations, the following parameters were taken:
the sample length 4.973 mm, the central FF wavelength
800.3 nm, the pulse duration 85 fs (FWHM), the focal spot
diameter (FWHM) 80 μm, the FF incidence angle 0.6 deg,
and periods of the lattice Λx � 10 and Λ � 115.65 μm at
the duty cycles of the lattice 0.73 and 0.872 (d � 100.85 μm,

Fig. 2. Measured angular distribution of averaged SH power for FF
incidence angle ∼3 mrad.

Fig. 3. Normalized measured and calculated zero-order NRND
spectrum.
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h � 14.80 μm), respectively. Under these conditions, the cal-
culated dependence provides a good description of the exper-
imental SH spectra as to the spectral as well as angular positions
of the SH peaks, while agreement between the measured and
calculated amplitudes is not good enough. Nevertheless, the
model proposed allows us to evaluate the SHG efficiency for
specific order. For this propose, we numerically integrate
Eq. (7) over the spectral and spatial frequencies. In particular,
SHG efficiency for zero order was calculated to be 3% ·W−1.
In our opinion, the discrepancy between predicted and mea-
sured values is caused by fabrication defects of the structure
and aberrations of optical system. At the same time, calculated
SHG efficiency in 1D NOS of the same length (d � Λ � L) is
quite low 4.5 × 10−2% ·W−1. Thus we expect approximately
70 times enhancement of SHG under nonlinear Raman–
Nath diffraction in 2D NLPC under study.

In summary, we have studied SHG of femtosecond laser
pulses in periodic 2D NLPCs. This process is found to be
in close analogy with nonlinear Raman–Nath diffraction,
which takes place in 1D nonlinear photonic lattices. We derive
an analytical expression for the process studied and find the
theoretical results to be in good agreement with the experimen-
tal data. We estimate the enhancement factor of nonlinear
Raman–Nath diffraction in 2D NLPC to be 70.
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