
Multiple quasi-phase-matching in nonlinear
Raman–Nath diffraction
Andrey M. Vyunishev1,2,* and Anatoly S. Chirkin3

1L.V. Kirensky Institute of Physics, 660036 Krasnoyarsk, Russia
2Siberian Federal University, 660079 Krasnoyarsk, Russia

3Faculty of Physics and International Laser Center, M. V. Lomonosov Moscow State University, 119992 Moscow, Russia
*Corresponding author: vyunishev@iph.krasn.ru

Received January 13, 2015; revised February 18, 2015; accepted February 18, 2015;
posted February 23, 2015 (Doc. ID 232126); published March 20, 2015

The method of the superposition of a nonlinearity modulation is employed to design a two-dimensional (2D) non-
linear photonic lattice for efficient multiple quasi-phase-matched second harmonic generation in the process of
nonlinear Raman–Nath diffraction (NRND). An analytical solution is proposed to calculate the second harmonic
intensity in rectangular 2D lattices. This approach can be useful for the generation of multiple second harmonic
beams with the efficiency a few orders of magnitude higher than in the case of nonphase-matched generation via
NRND. © 2015 Optical Society of America
OCIS codes: (190.2620) Harmonic generation and mixing; (190.4223) Nonlinear wave mixing; (190.4420) Nonlinear

optics, transverse effects in.
http://dx.doi.org/10.1364/OL.40.001314

Nonlinear Raman–Nath diffraction (NRND) is the most
exciting nonlinear optical phenomenon to occur in peri-
odic nonlinear photonic lattices [1–6]. This phenomenon
appears as multiple second harmonic beams generated at
small angles with respect to the incoming fundamental
frequency (FF) beam, which is defined by the lattice
periodicity [2]. However, NRND is inherently a non-
phase-matched nonlinear optical process, which limits
its applications [7]. This inherent limitation could be
overcome by using two-dimensional (2D) nonlinear pho-
tonic lattices [8]. In [9], it was reported that the generali-
zation of the conventional quasi-phase-matching (QPM)
technique to fit the case of 2D nonlinear photonic lattices
could be used to obtain efficient, multiple second har-
monic generations (SHG) in the process of Cerenkov
nonlinear diffraction. In contrast, the use of the QPM
technique in the case of NRND is complicated, because
different orders have specific phase mismatches. Despite
this, a modification of the QPM technique could help
solve the problem. It has been reported [10] that random
QPM can be employed to increase SHG efficiency. How-
ever, in this case, the appropriate reciprocal lattice vec-
tors have arbitrary Fourier amplitudes in a wide range,
and the conversion efficiencies are not high enough.
Another way of increasing the efficiency of the SHG is
to apply the method known as the superposition of non-
linearity modulation [11]. This method makes it possible
to design a nonlinear photonic lattice that provides a set
of desired reciprocal lattice vectors for multiple nonlin-
ear optical processes. This is the most suitable method
for the realization of multiple SHG via NRND. In this
case, specific phase mismatches corresponding to differ-
ent NRND orders are compensated for by the appropriate
reciprocal lattice vectors with the Fourier amplitudes as
high as possible.
In this Letter, we report our theoretical studies on the

NRND in one- and two-dimensional nonlinear photonic
lattices. We propose a strategy to increase SHG effi-
ciency based on the method of the superposition of quad-
ratic nonlinearity modulation. This method enables us to

achieve efficient quasi-phase-matched SHG for several
NRND orders simultaneously.

Let us consider the SHG in the one-dimensional (1D)
and 2D nonlinear photonic lattices presented in Fig. 1.
We will introduce a g�x; y� function that describes the
2D space variance of the nonlinear coefficient over the
lattices and takes the values 1 or −1. This function can
be represented as the multiplication of two functions,
each one corresponding to one space dimension. such
that g�x; y� � ξ�x�η�y�.

Let us specify function η�y� as a superposition of har-
monic oscillations:

η�y� � sgn
�X

j

Cj sin�GYjy� φj�
�
; (1)

where Cj, GYj, and φj are the numerical coefficient, the
primary reciprocal lattice vector, and the phase,
respectively. The signum function can be defined as
sgn�x� � jxj∕x. Hereafter, we will refer to either the peri-
odic or aperiodic 2D lattices shown in Figs. 1(b) and 1(c),
depending on the type of the function η�y�.

In accordance with [7,12], the second harmonic
field amplitude at the distance L in a 1D lattice
(g�x; y� � ξ�x�) shown in Fig. 1(a) is governed by

Fig. 1. Design of periodic 1D (a) and 2D (b) nonlinear
photonic lattices and aperiodic 2D (c) one.
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A2�KX; L� � α exp�iLK2
X∕2k2�

Z
L

0
R�KX� exp�iΔ~ky�dy;

(2)

where α � πa2Γ∕2, Γ � −iβ2I1, β2 � 2πk2χ�2�∕n2
2, Δ~k �

Δk − K2
X∕2k2, Δk � k2 − 2k1 is the wave vector mismatch

between the FF and second harmonic waves, n2 is
the refractive index at the second harmonic frequency,
χ�2� is the quadratic nonlinear susceptibility, and KX
is the spatial frequency. The function R�KX� �P

mξm exp�−a2�mGX � KX�2∕8� is responsible for phase
matching the transverse components of the FF and sec-
ond harmonic wave vectors, which produces a series of
second harmonic beams propagating at the angles
θm � arcsin�mGX∕k2�. Here, m � 0;�1;�2;… is the
NRND order, GX is the primary reciprocal lattice vector,
and a is the FF beam radius. The Fourier coefficients ξm
for a periodic function with the duty cycle D take the
form ξm � 2D − 1 if m � 0 and ξm � 2 sin�πmD�∕πm
otherwise. For the calculations, we consider extraordi-
nary waves that are coupled by the relevant nonlinear
coefficient of congruent lithium niobate d33, i.e.,
χ�2� � 2d33. The required refractive index data were
taken from [13]. For the second harmonic amplitude gen-
erated in a 1D lattice, the integration of Eq. (2) gives

A2�KX; L� � αL exp�iL∕2�Δk� K2
X∕2k2��

× sinc�Δ~kL∕2�R�KX�; (3)

where sinc�x� � sin�x�∕x.
The expression given in Eq. (2) can be easily general-

ized to the case of a 2D lattice using the approach from
[14–16]. In this case, the 2D lattice can be represented as
a stack of 1D lattices arranged together along the y direc-
tion as depicted in Figs. 1(b) and 1(c). Each 1D lattice
represents a layer contributing to the SHG. The function
ξ�x� of a given layer is an inverse duplicate of the adja-
cent layers. We assume that the qth layer of thickness
dq is constrained by positions yq−1 and yq, so that
yq � yq−1 � dq (y0 � 0). The function η�y� provides a
set of positions yq, where the sign of nonlinear suscep-
tibility alternates. Then, by calculating the second har-
monic amplitudes layer by layer, one can obtain the
total second harmonic field amplitude at the exit of
the lattice. Consequently, the second harmonic field
amplitude after N layers is expressed as follows:

A2�KX;yq� � −�iα∕Δ~k�R�KX�exp�iLK2
X∕2k2�

×
XN
q�1

�−1�q�exp�iΔ~kyq�− exp�iΔ~kyq−1��

� −�iα∕Δ~k�R�KX�exp�iLK2
X∕2k2�

×
XN
q�1

�−1�q exp�iΔ~kϑq��exp�iΔ~kdq�− 1�: (4)

The factor �−1�q accounts for the phase flip at the tran-
sition from one layer to another, while the factor
exp�iΔ~kϑq� accounts for the relative phase accumulated

at the distance ϑq �
Pq−1

r�1 dr . The second harmonic
spectral intensity is given by S�KX� � jA2�KX�j2.

First, we analyze SHG via NRND in a 1D nonlinear
photonic lattice. In this case, we use Eq. (3). For the
calculations, the following parameters were taken: the
FF wavelength of 1.545 μm, the focal spot radius
a � 17 μm, the lattice period of 10 μm, the duty cycle
D � 0.75, and the sample length of 1 mm. Under these
conditions, the second harmonic intensity corresponding
to different transverse orders m oscillates along the
media, as shown in Fig. 2(a). The period of oscillations
grows with the order m until it maximizes at the fifth
order. This is due to the nonmonotonic behavior of
the absolute value of Δ~k presented in Fig. 3(a). Note that
as the propagation distance increases, the angular inten-
sities in Fig. 2(a) shift toward larger angles for the first
five orders, in contrast to the sixth one. There is a range
of sample thicknesses and propagation angles where an
odd number of coherent lengths falls within the propaga-
tion direction of SHG. In that case, maximum nonphase-
matched SHG takes place. This situation is similar to the
Maker fringes observed in homogeneous nonlinear
media away from phase matching. The angular shift
of the maxima of the second harmonic intensity in
Fig. 2(a) is caused by the term under the sinc function
in Eq. (3).

In Fig. 2(b), the growth in second harmonic intensity
for the fifth and sixth NRND orders with respect to the
lower ones is due to the contribution from the sinc func-
tion in Eq. (3). This factor has maximum effect when
Cerenkov’s radiation condition k2 cos�θC� � 2k1 is
fulfilled; for our case, the external Cerenkov second har-
monic angle is θC � 24.88 deg . The Cerenkov angle lies
between the angles of the fifth and sixth NRND orders
considered by the function R�KX� in Eq. (3). As a result,

Fig. 2. Angular dependence of second harmonic intensity as a
function of (a) the propagation distance and (b) the angular
distribution of the second harmonic intensity at the distance
L � 200 μm in a 1D nonlinear photonic lattice.
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angular oscillations in the second harmonic intensity
exist in the range from 20 to 30 deg.
When analyzing SHG in 2D nonlinear photonic lattices,

we can refer to either single or multiple QPM, depending
on how many transverse QPM orders are supposed to be
simultaneously matched by the reciprocal lattice vectors
provided by the lattice in the longitudinal direction. We
assume that all longitudinal components of FF and sec-
ond harmonic wave vectors are matched by the primary
reciprocal lattice vector, resulting in the first-order QPM
for all NRND orders involved.
We consider multiple QPM interactions of the first

three transverse orders (m � 0;�1;�2), although the
method used could be applied to an arbitrary number
of orders. For definiteness, we assume that indexes j
in Eq. (1) correspond to indexes m in Eq. (4), i.e.,
j � jmj. Then,

GYm � jΔ~k�m�j � Δk − �mGX�2∕2k2: (5)

Under this assumption, an aperiodic 2D lattice must
contain the reciprocal lattice vectors GY;0 � Δk, GY;1 �
Δk − G2

X;1∕2k2, and GY;2 � Δk − 4G2
X;1∕2k2. According to

Eq. (5), longitudinal QPM reciprocal lattice vectors do
not depend on the sign of the transverse index m. The
structure of the nonlinear lattice under consideration
is described by Eq. (1). We determine the Fourier
amplitudes of these components for the parameters
Cj � 1 and φj � 0. In this case (see also [17]), η�y� is
given by

η�y� � sgn�sin�GY;0y� � sin�GY;1y� � sin�GY;2y��: (6)

Figure 3(b) shows the layer thicknesses provided by
the function η�y� of the layer number in the propagation
direction y. The layer thicknesses vary in the range from
8.0 to 12.5 μm, with a mean value of 10.2 μm. It should be
noted that this structure could be fabricated using the
standard electric-field poling technique [18]. As shown
in Fig. 3(c), the Fourier transform of the function η�y�
contains a triplet of primary spatial frequencies, with
the Fourier amplitudes ranging from 0.3 to 0.4. These val-
ues of the Fourier amplitudes are consistent with the re-
sults found in [17]. The spatial frequencies of these peaks
are suitable for the compensation for the wave vector
mismatch for the first three NRND orders. Similarly,
for the case of a single QPM of the mth NRND order,
Eq. (1) reads η�y� � sgn�sin�GYmy��. Its Fourier trans-
form is represented as a sharp peak centered at the spa-
tial frequencyGYm, as shown in Fig. 3(c), for the case of a
zero order. The corresponding spatial frequency is
GY0 � 0.32 μm−1 (modulation period Λ � 18.84 μm),
which exactly equals the appropriate wave vector mis-
match. As a result, the calculated angular dependence
of the second harmonic intensity derived from Eq. (4)
grows along the propagation direction for the zero NRND
order [Fig. 4(a)]. The second harmonic intensity is four
orders of magnitude higher than the maximum second
harmonic intensity generated at the coherent length in
a 1D lattice. In the same manner, the calculated angular
dependence of the second harmonic intensity for the
case of multiple QPM grows along the propagation direc-
tion for the first three NRND orders [Fig. 4(b)]. The sec-
ond harmonic intensity is three thousand times higher
than the maximum second harmonic intensity generated
at the coherent length in a 1D lattice. One can see from

Fig. 3. (a) Absolute value of the wave vector mismatch versus
the transverse QPM order. (b) Layer thickness as a function of
the layer numbers in the direction y. (c) Reciprocal lattice vec-
tor spectra of the periodic (green) and aperiodic (blue) function
η�y�.

Fig. 4. Evolution of the angular distributions of the second
harmonic intensity along the propagation direction for (a) peri-
odic and (b) aperiodic 2D nonlinear photonic lattices shown in
Figs. 1(b) and 1(c), respectively.
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Fig. 4(a) that the monotonic dependence of the second
harmonic intensity on the distance is observed for a
single QPM interaction. But in the case of multiple
QPM interactions, weak spatial modulations of SHG oc-
cur due to the contribution of the phase-mismatched
interactions, which decrease with the increasing propa-
gation length.
Figure 5 summarizes the resultant angular dependen-

ces of the second harmonic intensities generated in 1D,
periodic, and aperiodic 2D nonlinear photonic lattices de-
picted in Fig. 1. These dependences are normalized by
the maximum zero-order second harmonic intensity gen-
erated at one coherent length in a 1D lattice. One can see
that multiple QPM enables us to achieve a remarkable
enhancement of SHG and to balance second harmonic
intensities between NRND orders. The angular widths
are larger than those in the case of a single QPM. Note
that the number of periods of second harmonic oscilla-
tions falling within the thickness of the lattice is about
50. Therefore, for a shorter wavelength range, we could
expect more efficient SHG, due to the shorter periods of
the oscillations at the same length of the lattice. On the
other hand, the approach developed does not apply the
restrictions on the thickness of crystal, and is only re-
stricted by the possibilities of the standard electric-field
poling technique [18].
Additionally, the optimization of the duty cycle of the

lattice in the transverse direction, the coefficients Cj in
Eq. (1), and the length of the lattice in the longitudinal
direction provide a wide range of amplitudes of second
harmonic beams. The desired intensity distribution
between the second harmonic beams can be achieved.
The choice of these parameters is a trade-off between
efficiency and the number of NRND orders employed.
In summary, we have shown that the method of

superposition of quadratic nonlinearity modulation is a

powerful tool to design 2D nonlinear photonic lattices
providing a desired set of reciprocal lattice vectors suit-
able for efficient multiple SHG via NRND. The efficiency
of this process can be increased by several orders of mag-
nitude compared to the case of nonphase-matched SHG
in 1D nonlinear photonic lattices. The proposed ap-
proach can be applied to similar calculations in other
types of 2D and three-dimensional nonlinear photonic lat-
tices. All that is required is to specify the sequence of the
layer thicknesses along the propagation direction. These
results open up new possibilities for creating nonlinear
multiplexers for the purpose of telecommunication sys-
tems, quantum networks, and for optical gratings.

The work was partially supported by the Grant of the
President of the Russian Federation MK-2908.2015.2 and
by RFBR Grant No. 15-02-03838.

References

1. S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A.
Arie, and Y. S. Kivshar, Phys. Rev. Lett. 100, 103902 (2008).

2. S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang,
and Y. S. Kivshar, Opt. Lett. 34, 848 (2009).

3. K. Kalinowski, P. Roedig, Y. Sheng, M. Ayoub, J. Imbrock, C.
Denz, and W. Krolikowski, Opt. Lett. 37, 1832 (2012).

4. Y. Sheng, W. Wang, R. Shiloh, V. Roppo, A. Arie, and W.
Krolikowski, Opt. Lett. 36, 3266 (2011).

5. Y. Chen, W. Dang, Y. Zheng, X. Chen, and X. Deng, Opt. Lett.
38, 2298 (2013).

6. A. M. Vyunishev, V. V. Slabko, I. S. Baturin, A. R.
Akhmatkhanov, and V. Y. Shur, Opt. Lett. 39, 4231 (2014).

7. Y. Sheng, Q. Kong, W. Wang, K. Kalinowski, and W.
Krolikowski, J. Phys. B 45, 055401 (2012).

8. V. Berger, Phys. Rev. Lett. 81, 4136 (1998).
9. Y. Sheng, V. Roppo, Q. Kong, K. Kalinowski, Q. Wang, C.

Cojocaru, J. Trull, and W. Krolikowski, Opt. Lett. 36,
2593 (2011).

10. W. Wang, Y. Sheng, V. Roppo, Z. Chen, X. Niu, and W.
Krolikowski, Opt. Express 21, 18671 (2013).

11. A. A. Novikov and A. S. Chirkin, Zh. Eksp. Teor. Fiz. 133,
483 (2008) [J. Exp. Theor. Phys. 106, 415 (2008)].

12. I. V. Shutov, I. A. Ozheredov, A. V. Shumitski, and A. S.
Chirkin, Opt. Spectrosc. 105, 79 (2008).

13. D. H. Jundt, Opt. Lett. 22, 1553 (1997).
14. M. Baudrier-Raybaut, R. Haïdar, P. Kupecek, P. Lemasson,

and E. Rosencher, Nature 432, 374 (2004).
15. A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I.

Zaitsev, and A. V. Zamkov, Phys. Rev. A 78, 031802(R)
(2008).

16. A. M. Vyunishev, A. S. Aleksandrovsky, A. I. Zaitsev, A. M.
Zhyzhaev, A. V. Shabanov, and V. Petrov, Opt. Lett. 38, 2691
(2013).

17. A. S. Chirkin and I. V. Shutov, Zh. Eksp. Teor. Fiz. 136, 639
(2009) [J. Exp. Theor. Phys. 109, 547 (2009)].

18. V. Y. Shur, J. Mater. Sci. 41, 199 (2006).

Fig. 5. Resultant angular dependences of second harmonic
intensity at the exit from 1D (gray), periodic (green), and aperi-
odic (blue) 2D nonlinear photonic lattices shown in Fig. 1.

April 1, 2015 / Vol. 40, No. 7 / OPTICS LETTERS 1317


