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We analyze second-harmonic generation (SHG) in a two-dimensional nonlinear optical superlattice (NLOS) with
its modulation period being chirped in the propagation direction and constant in the transverse direction.
This results in efficient multiple SHG via nonlinear Raman–Nath diffraction. We obtain exact analytical expres-
sions for a SH amplitude generated in chirped 2D NLOSs and for its quasi-phase-matching bandwidth. The
results of analytical calculations are in excellent agreement with the numerical ones. We show that the process
is robust to angular deviations of NLOS and it can be applied to enable tunable and broadband frequency
conversion. © 2015 Optical Society of America
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1. INTRODUCTION

One of the challenges of nonlinear optics is to create a new
family of multichannel nonlinear optical converters that offer
ultrawide spectral tunability and large angular aperture. The
most promising phenomenon that can be used for these pur-
poses is nonlinear Raman–Nath diffraction (NRND) in one-
dimensional nonlinear optical superlattices (NLOSs) [1–6]. The
main advantage of this phenomenon is the ability to emit multi-
ple second-harmonic (SH) beams at characteristic angles relative
to the incoming fundamental frequency (FF) beam. The disad-
vantage of this process is oscillation of the SH amplitude
along the propagation direction because of the phase mismatch
between FF and SH waves. To solve this problem, two-
dimensional (2D) NLOSs were proposed [7,8]. The authors of
[9] experimentally studied second-harmonic generation (SHG)
in an almost periodic 2D NLOS. The periodicity of the super-
lattice in the propagation direction allows us to realize SHG
under quasi-phase-matching (QPM) for a discrete number of
wavelengths, which are different for different NRND orders.
In [8], a method of superposition of nonlinear susceptibility
modulation is applied for designing 2D NLOSs to overcome
this circumstance. At the same time, the 2D NLOSs described
in [8,9] are characterized by narrow spectral and angular

acceptances. On the contrary, 2D NLOSs with random spatial
fluctuations of the nonlinear coefficient in the propagation di-
rection possess a wide range of reciprocal superlattice vectors
(RSVs) to match appropriate FF and SH wave vectors [7].
In this case, enhanced SHG can be achieved in wide spectral
and angular ranges. Alternatively, chirped spatial modulation
of the nonlinear coefficient of superlattices can help solve the
problem. This is the most feasible technique to obtain a broader
RSV spectrum. Contrary to the cases of angular- and QPM, the
spectral response of chirped structures increases with propaga-
tion length. Chirped 1D NLOSs have been shown to be prom-
ising for compressing and stretching optical pulses [10] and for
broadband harmonic [11] and biphoton [12,13] generation.
Chirped structures are also considered to be promising for
adiabatic frequency conversion with efficiency as high as
possible. The basic concept of and recent advances in adiabatic
frequency conversion are reviewed in [14]. However, in our
opinion an exact analytical expression to characterize SHG in
chirped lattices has not been found yet.

In the present work, we study SHG in a 2D nonlinear op-
tical superlattice. We designed a rectangular nonlinear optical
superlattice such that its modulation period is chirped in the
propagation direction and periodical modulation is in the
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transverse direction. We obtain an exact analytical expression for
the SH amplitude generated in a chirped 2DNLOS. The results
are found to be in excellent agreement with numerical calcula-
tions. The employed approach ensures efficient multiple fre-
quency generation via nonlinear Raman–Nath diffraction.
These results open up new possibilities to create multichannel
nonlinear optical converters for a wide range of applications.

2. THEORETICAL MODEL

We begin our analysis on the SHG by considering propagation
of the fundamental wave through a chirped 2D nonlinear op-
tical superlattice presented in Fig. 1(a). It is assumed that the
nonlinear susceptibility of the superlattice is modulated peri-
odically along the transverse direction (axis x) and represents
a chirped rectangular function along the propagation direction
(axis y). This configuration allows us to match FF (k1) and SH
(k2) wave vectors by appropriate RSVs, as shown in Fig. 1(b). In
particular, the linear dependence of RSVs along the propagation
direction can be used to compensate wave vector mismatches
between longitudinal components (qy � Δk∥) while the discreet
set of RSVs in the transverse direction produces a series of
NRND orders (qx � Δk⊥). It can be mathematically expressed
as momentum conservation conditions in projections onto the
corresponding axes,

Δk⊥ � jk2j sin�θ� − 2jk1j sin�γ� � mjqxj; (1)

Δk∥ � jk2j cos�θ� − 2jk1j cos�γ� � njqyj; (2)

where γ and θ are the inner FF and SH propagation angles, re-
spectively; m is the NRND order; and n is the effective QPM
order. Equation (1) is known as the nonlinear Raman–Nath con-
dition that can be represented in the most convenient form:

sin θm � 2jk1j sin�γ� � mjqx j
jk2j

: (3)

Equation (2) describes the condition for Cerenkov nonlinear dif-
fraction [15–22]. To satisfy this condition for a set of NRND
orders, linearly chirped (gradually stepped) spatial modulation of
the sign of nonlinear susceptibility can be applied.

The second order nonlinear susceptibility of the superlattice
can be represented as a binary function of two spatial
coordinates g�x; y� taking the values �1 over the structure,
while the refractive index is supposed to be homogeneous. It

is assumed that the conversion efficiency is low and undepleted
field approximation can be applied. Moreover, the process
under consideration occurs within a narrow angular range,
i.e., SH propagation angles θm are small enough to satisfy
sin θm∕θm ≈ 1. This means that the problem under study
can be considered in paraxial approximation. Then, given these
assumptions, the process of SH generation can be described by
the equation�

∂
∂y

� i
2k2

Δ⊥

�
A�r; y� � Γg�x; y�F 2�r�eiΔky; (4)

where Γ � −2iπk2χ�2�A2
1∕n22; A1 and A are the complex FF

and SH field amplitudes, respectively; χ�2� is the second-order
nonlinear susceptibility; Δk � k2 − 2k1 is the wave vector mis-
match; Δ⊥ � �∂2∕∂x2 � ∂2∕∂z2� is the transverse Laplacian;
n2 denotes the refractive index at the SH frequency; F�r� �
exp�−r2∕a2� is the transverse distribution of the fundamental
beam intensity; r2 � x2 � z2; and a is the spot radius.

To solve Eq. (4), it is easy to represent the amplitude A�r; y�
as a Fourier spectrum,

A�K; y� �
ZZ

A�r; y�eiKrdxdz; (5)

where K 2 � K 2
x � K 2

z .
The limits of integration are from −∞ to ∞ and will be

omitted in our further discussion. Then Eq. (4) can be rewrit-
ten as�

∂
∂y

−
iK2

2k2

�
A�K; y� � Γ

ZZ
g�x; y�F 2�r�eiΔkyeiKrdxdz: (6)

We define the function g�x; y� as a product of two functions
g�x; y� � ξ�x�η�y�, which are responsible for the nonlinear sus-
ceptibility modulation along respective directions. The spatial
dependence of the nonlinear coefficient along the x direction
can be expressed as the following Fourier series,

ξ�x� �
X

m�0;�1;…

ξmeimqxx : (7)

where qx � 2π∕Λ is the primary reciprocal superlattice vector
(spatial frequency), Λ is the modulation period. The Fourier
coefficients ξm for a periodic rectangular function with the duty
cycle D take the form ξm � 2D − 1 if m � 0 and ξm �
�2∕πm� sin�πmD� otherwise. The duty cycle value defined
as a ratio of the relevant domain thickness to the modulation
period influences the magnitude of the corresponding Fourier
coefficient and the strength of respective nonlinear diffrac-
tion order.

Let us define the spatial modulation of the nonlinear coef-
ficient along the y direction as

η�y� � sgn�sin�K �y�y��; (8)

where the local spatial frequency K �y� � qy�1� βy� is a slowly
varying function of the coordinate y ∈ �−L∕2; L∕2�, qy is the
primary spatial frequency in the center of the superlattice at
y � 0, and β is the rate of frequency increase or the chirp
parameter. Note that β � 0 corresponds to the periodic
structure.

Fig. 1. (a) Spatial variance of the sign of nonlinear susceptibility
over a chirped superlattice, and (b) the vectorial phase-matching dia-
gram. The rainbow region illustrates the range of appropriate values of
reciprocal superlattice vectors.
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The signum function can be represented in an integral form,

sgn�f �y�� � �2∕π�
Z

∞

0

sin�uf �y��
u

du: (9)

Substituting Eq. (8) into Eq. (9) yields

sin�u sin�K �y�y���2
X∞
p�0

J2p�1�u�sin��2p�1�K �y�y�; (10)

where J2p�1�u� is the Bessel functions of real argument.
Taking into account the integral relationZ

∞

0

u−1J2p�1�u�du � 1

2p� 1
; (11)

we arrive at [23]

η�y� � �4∕π�
X∞
p�0

1

2p� 1
sin��2p� 1�K �y�y�: (12)

As expected from Eq. (12) the spatial frequency chirp appears
in all orders of spatial modulation of nonlinearity.

Integrating Eq. (6) over the transverse coordinates, which
account for Eq. (7), and assuming Eq. (12), we obtain

A�K x; y� exp�−i��K 2
x � K 2

z �∕2k2�y� � �4α∕π�

×
X

p�0;1;2;…

1

2p� 1

Z
sin�Q�1� βy�y� exp�iΔk̃y�dy�: (13)

Here, α� πa2Γ∕2, Δk̃ � Δk −K 2
x∕2k2, Q�p� � −�2p� 1�qy

is the reciprocal superlattice vector for the central frequency in
the center of the lattice, and 2p� 1 can be treated as the QPM
order. The function R�K x� �

P
mξm exp�−a2��K x � mqx�2�

K 2
z �∕8� is associated with phase matching of the transverse com-

ponents of FF and SHwave vectors. The solution of Eq. (13) is a
SH amplitude generated in a 2D superlattice (compare to [12]):

A�K x; K z; L� � �α∕π��−1�3∕4 exp

�
i
�K 2

x � K 2
z �

2k2
L
� X

p�0;1;2;…

1

2p� 1
R�K x�

ffiffiffiffiffiffiffi
π

βQ

r

×
�
i exp

�
−i
�Δk̃ � Q�2

4βQ

��
erfi

��1� i��Δk̃ � Q � βQL�
2

ffiffiffiffiffiffiffiffiffi
2βQ

p
�
− erfi

��1� i��Δk̃ � Q − βQL�
2

ffiffiffiffiffiffiffiffiffi
2βQ

p
��

� exp

�
i
�Δk̃ − Q�2

4βQ

��
erfi

��1 − i��Δk̃ − Q � βQL�
2

ffiffiffiffiffiffiffiffiffi
2βQ

p
�
− erfi

��1 − i��Δk̃ − Q − βQL�
2

ffiffiffiffiffiffiffiffiffi
2βQ

p
���

: (14)

Here, erfi�z� � −ierf �iz� � 2∕
ffiffiffi
π

p R
z
0 exp�t2�dt is an imagi-

nary error function. Note that summation in Eq. (14) is per-
formed over positive integers and the first term is responsible
for the QPM when the condition Δk̃ � Q � βQL � 0 is sat-
isfied, while the second one contributes to the process if
Δk̃ − Q � βQL � 0. The case under study is Δk̃ � Q �
βQL � 0 and the second term in Eq. (14) can be ignored.

Analyzing Eq. (14) we obtained a simple formula for
the SHG spectral bandwidth under NRND in a chirped 2D
superlattice,

Δλ2�β; m� ≃
				 2βQL

d
dλ2

�Δk̃�

				 �
				 2βQL

d
dλ2

�Δk − �mqx�2∕2k2�

				; (15)

where λ2 is the SH wavelength.

Usually a large spectral bandwidth means wide angular
acceptance of the nonlinear converter. In our case, a spectral
component being in the center of the spectral bandwidth at
normal incidence will be efficiently converted to SH when
propagating into the structure at a critical angle:

γcr�β; m� ≃� arccos

�
1

2k1

�
k2 −

�mqx�2
2k2

�
�
1� βL

2

�
Q
��

:

(16)
The solution for chirped superlattices is significantly different
from the one corresponding to a periodic lattice. For further in-
vestigation, we need to find a solution for a periodic structure. In
this case spatial modulation of the nonlinear coefficient along the
propagation direction can be expressed in the form of Eq. (7),

η�y� �
X

n�0;�1;…

ηne
inqyy ; (17)

where ηn are the Fourier coefficients.
Under this assumption, the solution of Eq. (6) is

A�K x;L��αLR�K x�

×
X

n�0;�1;…

ηn exp

�
iL
�K 2

x �K 2
z �

2k2

�
sinc

�
L�Δk̃�Q�

2

�
:

(18)

Here, Q � nqy. Equation (18) is consistent with the results
of paper [24], where Cerenkov nonlinear diffraction in a 2D
NLOS was considered.

In the case of a lattice with periodic modulation, the QPM
SHG bandwidth equals

Δλ2�m� ≃
				 0.886π

L d
dλ2

�Δk̃�

				: (19)

While the spatial frequency takes the values in accordance with
Eq. (1), i.e., K x�θ; γ� � k2 sin�θ� − 2k1 sin�γ�, the wave vec-
tor mismatch in longitudinal direction obeys Eq. (2), i.e.,
Δk̃�θ; γ� � k2 cos�θ� − 2k1 cos�γ�. Indeed, if K 2

x∕2k2 ≪ k2
in Eq. (12) we obtain k2 cos�θ� ≃ k2 − K 2

x∕2k2.

3. RESULTS AND DISCUSSION

It is obvious that nonlinear Raman–Nath diffraction should
have a different effect in different 2D NLOSs. In this context,
we consider spectral and spatial characteristics acquired by SH
under nonlinear Raman–Nath diffraction in periodic and
chirped 2D NLOSs. We will analyze the influence of spatial
parameters of the lattices on the SH characteristics.
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We choose lithium niobate as a nonlinear medium and con-
sider propagation and interaction of extraordinary waves. The
fundamental radiation was chosen to be linearly polarized along
the z axis so FF and SH waves were coupled by the relevant
nonlinear coefficient of lithium niobate χ�2� � 2d 33. The prin-
cipal refractive indices of lithium niobate were approximated by
the Sellmeier coefficients from [25]. First, we calculate spectral
characteristics of SH generated in periodic and chirped 2D
NLOSs. Equation (18) was used to calculate the spectral inten-
sity S�K x; L� � jA�K x; L�j2 in a periodic lattice. The following
parameters were chosen for the calculations: central fundamen-
tal wavelength 800 nm, beam size 80 μm (FWHM), thickness
of the superlattice L � 5 mm, NRND order m � 0, QPM or-
der n � 3 (RSV Q � 3qy, Λ � 7.73 μm, and the respective
Fourier coefficient ηn�3 � −2∕�3π�). The calculated spectral
dependence of the SH intensity is shown in Fig. 2. For the case
of a periodic structure the spectral dependence has the shape
of a typical sinc2�x�-function, 0.05 nm wide (FWHM) and
located at half of the central fundamental wavelength. Using
Eq. (14), we calculated SHG in a positively chirped (up-
chirped) superlattice of the same length. We assume that the
third-order QPM SHG (2p� 1 � 3) for the 0th NRND order
(m � 0) is realized in the center of the superlattice (y � 0).
The chirp parameter is taken to be β � 4 m−1 since the spatial
frequency changes from 0.805 to 0.821 μm−1. This means that
the effective period varies from 7.81 to 7.66 μm throughout the
superlattice. Note that the layer thicknesses fit the hyperbolic
law for spatial frequency. One can see from Fig. 2 that the spec-
tral response of the chirped structure is wider than the one cor-
responding to the periodic structure. The spectral dependence
has ripples resulting from oscillations of the erfi-functions in
Eq. (14). In order to smooth the spectral ripples, an apodization
technique [26] may be additionally employed to design the
structure, which, however, is beyond our consideration. The
results obtained can be generalized for the case of broadband
upconversion in chirped 1D NLOSs.

Again, using Eq. (18) we calculate spatial distribution of the
SH spectral intensity for NRND in periodic 2D NLOS. We
chose the duty cycle Dx � 0.74 to obtain comparable Fourier
coefficients for the first three NRND orders (ξm�0 � 0.48,

ξm�1 ≈ 0.46, ξm�2 ≈ −0.32). The result of these calculations
is presented in Fig. 3(a). It is seen that the NRND orders
experience a spectral shift toward shorter wavelengths as
the NRND order grows [9]. This means that using quasi-
monochromatic radiation will result in inefficient SHG for
all NRND orders except for one whose longitudinal phase-
matching condition satisfied. On the contrary, the chirped
structure exhibits wider spectral responses for all NRND or-
ders, as shown in Fig. 3(b). The spectral ranges for different
orders may overlap ensuring efficient NRND for a set of orders.

For a certain NRND order, the SH spectral components
evolve along the structure, as shown in Fig. 4. It is seen that
the spectral response of the structure is linearly distributed over

Fig. 2. SH spectra generated in periodic (blue) and chirped (green)
2D nonlinear superlattices for the zeroth-order NRND.

Fig. 3. Angular distribution of the spectral intensity of SH radiation
in (a) periodic and (b) chirped 2D nonlinear optical superlattices.

Fig. 4. Evolution of the SH spectral intensity along the propagation
direction in a chirped superlattice for zero-order NRND (β � 4 m−1).
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the structure. As the fundamental radiation propagates through
the structure, new spectral components are involved in the
process. When the SH intensity reaches its maximum, weak
intensity oscillations appear. The scale of oscillations decreases
in the propagation direction, which can be explained by spatial
dependence of the phase mismatch in the longitudinal direc-
tion. Namely, the farther away from the region of exact
QPM, the smaller the scale of oscillation. These oscillations
are accompanied by minor reduction in the intensity along
the propagation direction. Moreover, the spectral width grows
along the propagation length, while the details of SH spectra
become smaller. From Fig. 4 we evaluate the spectral width
to be 0.8 nm ·mm−1. Note that changing the sign of the
chirp parameter results in mirror inversion of the calculated
dependence in the spectral range relative to the central SH
wavelength. This can be simply achieved by inverting the
coordinates y → −y.

Next, we study the influence of the chirp parameter on SH
spectral characteristics. In Fig. 5(a), the calculated dependence
is shown in the range of relatively small values of the chirp
parameter β � 0.1–5 m−1. These results are represented as a
product βS�K x; L� because the spectral intensity is an inverse
function of the chirp parameter and hence the spectral intensity

decays rapidly [see Eq. (14)] unlike the dependence on the co-
ordinate (Fig. 4). In some sense, these dependences are similar,
i.e., the dependence in Fig. 5(a) behaves in the same manner as
the dependence on the propagation coordinate (Fig. 4).
Figure 5(b) shows distribution of the spectral intensity for peri-
odic and chirped 2D NLOSs for selected chirp parameters
β � 4; 20; 40 m−1. On the one hand, increasing the chirp
parameter leads to spectral broadening. From Fig. 5(b), the cor-
responding spectral bandwidths are 4.0, 21.0, 43.2 nm.
Equation (15) gives the following spectral bandwidths:
Δλ2 � 4.4; 21.8; 43.6 nm. On the other hand, the external
critical angle calculated using Eq. (15) is 4.6 deg for m � 0
and β � 4 m−1. Therefore, the choice of the chirp parameter
is a trade-off between a wide spectral (angular) bandwidth and
high SHG efficiency. Equation (14) allows us to find the opti-
mal value of the chirp parameter to design 2D NLOS enabling
efficient conversion of ultrabroadband laser radiation.

We numerically verified Eq. (14) using the approach de-
scribed in [8]. This approach takes into account contributions
from a sequence of layers in arbitrary structured rectangular 2D
NLOS. Figure 6 illustrates the results of numerical calculations
of the spectral response in a chirped lattice in comparison with
the results obtained from the analytical expression [Eq. (14)].
These dependences coincide with each other in a wide range of
intensities. We can conclude that Eq. (14) provides high accu-
racy of calculations.

4. CONCLUSION

We have elaborated the theory of second-harmonic generation
(SHG) under nonlinear Raman–Nath diffraction in a two-di-
mensional nonlinear optical superlattice (2D NLOS) character-
ized by chirped modulation of the nonlinear susceptibility in
longitudinal direction. It is shown that a chirped 2D superlat-
tice supports broadband multiple SHG via nonlinear Raman–
Nath diffraction. An expression for the spectral bandwidth
of quasi-phase-matched SHG has been obtained. The
approach developed can be easily generalized to the case of

Fig. 5. (a) Dependence of the SH spectral intensity on the chirp
parameter, and (b) a set of SH spectra for characteristic values of
the chirp parameter (β � 4; 20; 40 m−1).

Fig. 6. Spectral response of chirped structures calculated numeri-
cally (blue) and analytically (β � 20 m−1) (green). The selected
bands correspond to the following QPM orders p � 1; 3; 5; 7 (from
right to left).
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supercontinuum radiation [27]. It is also necessary to note that
it is of interest implementing a method [28,29] to synthesize
2D nonlinear structures for the generation of the second-
harmonic pulses of desired shape and phase profile under
the nonlinear Raman–Nath diffraction. In conclusion, 2D
NLOSs may inspire a wide range of applications in laser wave-
length multiplexing and synthesis of subfemtosecond light
pulses [30,31].

Funding. Council of the President of the Russian
Federation (MK-2908.2015.2); Russian Foundation for Basic
Research (RFBR) (15-02-03838).
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